-
公开(公告)号:CN111242201A
公开(公告)日:2020-06-05
申请号:CN202010014622.5
申请日:2020-01-07
Applicant: 北京师范大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于对抗生成网络的半监督恒星光谱分类方法:该方法是基于已知训练样本较少情况下的分类方法。由于已知特定天体的光谱数量非常少,想要对特定天体的光谱进行分类,然而使用传统的基于机器学习和统计的分类方法需要大量已知的数据来训练分类模型。因此,本方法与监督方法不同,所提出的方法可以充分利用大量未标记的样本,其包含两部分:捕获数据分布的生成器和确定样本是否由实际数据组成的判别器。然后利用少量带标签的数据对训练好的判别器再进行训练,即可得到较好的分类模型。利用真实世界光谱数据,并且是光谱数据数量有限的情况下,评估模型的性能,实验结果表明该模型在分类精度方面优于其他方法。