-
公开(公告)号:CN109965869A
公开(公告)日:2019-07-05
申请号:CN201811539310.5
申请日:2018-12-16
Applicant: 北京工业大学
IPC: A61B5/0476
Abstract: 本发明公开了基于脑源域空间的MI‑EEG识别方法,对采集到的运动想象脑电信号进行共平均参考及带通滤波等预处理;使用标准化低分辨率脑电磁断层扫描成像算法对脑电信号进行逆变换,得到脑源域偶极子偶极矩幅值时间序列;使用数据驱动方法,基于偶极子偶极矩幅值大小进行偶极子的初选,并采用连续小波变换对其进行时频分析,实现偶极子的精选及最优时间段的确定;选用一对一共空间模式算法提取偶极子小波系数功率序列特征,并输入到支持向量机中进行分类。本发明提高空间分辨率的同时,使得其时域、频域、空域信息在偶极子的优选、最优时间段的确定,及特征提取中得以充分利用,对于提高计算效率和分类精度具有重要意义。
-
公开(公告)号:CN110584660B
公开(公告)日:2022-02-15
申请号:CN201910838431.8
申请日:2019-09-05
Applicant: 北京工业大学
Abstract: 本发明公开了基于脑源成像与相关性分析的电极选择方法,根据电极帽的初始电极配置确定基础电极组;然后,对采集到的运动想象脑电信号进行带通滤波预处理;接着,使用标准化低分辨率脑电磁断层扫描成像算法对MI‑EEG进行脑源成像,得到脑源域偶极子幅值时间序列;进而,根据每次实验的偶极子幅值峰值确定脑皮层激活区域,计算激活区域内偶极子幅值时间序列与各电极MI‑EEG信号的皮尔逊相关系数并降序排列;最后,选择相关系数较大的电极与基础电极组结合组成最优电极组。本发明排除了与想象任务相关性弱且不利于分类的电极,对于提高计算效率和实验便捷性具有重要意义。
-
公开(公告)号:CN109965869B
公开(公告)日:2021-09-10
申请号:CN201811539310.5
申请日:2018-12-16
Applicant: 北京工业大学
Abstract: 本发明公开了基于脑源域空间的MI‑EEG识别方法,对采集到的运动想象脑电信号进行共平均参考及带通滤波等预处理;使用标准化低分辨率脑电磁断层扫描成像算法对脑电信号进行逆变换,得到脑源域偶极子偶极矩幅值时间序列;使用数据驱动方法,基于偶极子偶极矩幅值大小进行偶极子的初选,并采用连续小波变换对其进行时频分析,实现偶极子的精选及最优时间段的确定;选用一对一共空间模式算法提取偶极子小波系数功率序列特征,并输入到支持向量机中进行分类。本发明提高空间分辨率的同时,使得其时域、频域、空域信息在偶极子的优选、最优时间段的确定,及特征提取中得以充分利用,对于提高计算效率和分类精度具有重要意义。
-
公开(公告)号:CN110584660A
公开(公告)日:2019-12-20
申请号:CN201910838431.8
申请日:2019-09-05
Applicant: 北京工业大学
IPC: A61B5/0476 , A61B5/0478
Abstract: 本发明公开了基于脑源成像与相关性分析的电极选择方法,根据电极帽的初始电极配置确定基础电极组;然后,对采集到的运动想象脑电信号进行带通滤波预处理;接着,使用标准化低分辨率脑电磁断层扫描成像算法对MI-EEG进行脑源成像,得到脑源域偶极子幅值时间序列;进而,根据每次实验的偶极子幅值峰值确定脑皮层激活区域,计算激活区域内偶极子幅值时间序列与各电极MI-EEG信号的皮尔逊相关系数并降序排列;最后,选择相关系数较大的电极与基础电极组结合组成最优电极组。本发明排除了与想象任务相关性弱且不利于分类的电极,对于提高计算效率和实验便捷性具有重要意义。
-
-
-