一种基于全局先验和局部上下文的深度学习显著性检测方法

    公开(公告)号:CN107274419A

    公开(公告)日:2017-10-20

    申请号:CN201710555319.4

    申请日:2017-07-10

    Abstract: 本发明公开一种基于全局先验和局部上下文的深度学习显著性检测方法,首先对彩色图像和深度图像进行超像素分割,基于每个超像素的紧凑性、独特性和背景性等中层特征,获得每个超像素的全局先验特征图,并进一步通过深度学习模型,得到全局先验显著图;然后,结合全局先验显著图和彩色图像与深度图像中的局部上下文信息,通过深度学习模型,得到初始显著图;最后,依据空间一致性和外观相似性优化初始显著图,得到最终显著图。应用本发明,解决了传统显著性检测方法无法有效检测到复杂背景图像中的显著物体,还解决了现有的基于深度学习的显著性检测方法由于提取出的高层特征存在噪声而导致误检的问题。

    一种基于深度选择性差异的显著性检测方法

    公开(公告)号:CN106991669A

    公开(公告)日:2017-07-28

    申请号:CN201710150961.4

    申请日:2017-03-14

    Abstract: 本发明提供了一种基于深度选择性差异的显著性检测方法。该方法首先获取深度图像作为输入,然后对每一张深度图像进行平滑处理,接着计算每一个分割区域的选择性差异值,最后依据中心偏好优化初始显著图,从而得到最终的显著性检测结果。应用本发明,不仅解决了单纯基于彩色图无法检测到与背景具有相似视觉特征物体的问题,还解决了基于深度图像忽略底部背景区域从而导致误检的问题。本发明适用于深度图像的显著性检测,计算复杂度较低,检测结果准确。本发明在图像处理和计算机视觉领域有着广泛的应用。

    一种基于背景先验的显著性检测方法

    公开(公告)号:CN108154150A

    公开(公告)日:2018-06-12

    申请号:CN201711369001.3

    申请日:2017-12-18

    Abstract: 本发明公开一种基于背景先验的显著性检测方法,首先将彩色图像及深度图像作为输入,然后通过预处理操作对输入的图像进行超像素分割及深度图质量评估,然后基于深度选择性差异和背景先验,计算每个超像素区域的初始显著值,最后通过代价函数的最小化对初始显著图进行优化,从而得到最终的显著性检测结果。应用本发明,不仅解决了传统的基于彩色图像的显著性检测方法无法检测到与背景具有相似视觉特征物体的问题,还解决了仅仅依靠深度信息进行显著性检测时,无法忽略底部背景区域而导致的误检问题。本发明适用于同时具有彩色图像及深度图像时的显著性检测,总体效果良好,能有效地检测出显著物体,准确率较高。

    一种基于多区域变尺度3D-HOF的监控视频异常检测方法

    公开(公告)号:CN107967440A

    公开(公告)日:2018-04-27

    申请号:CN201710845420.3

    申请日:2017-09-19

    CPC classification number: G06K9/00724 G06K9/4647 G06K9/6223

    Abstract: 本发明公开一种基于多区域变尺度3D-HOF的监控视频异常检测方法,首先获取监控视频作为输入,对视频进行分区处理,然后提取各分区内的变尺度3D-HOF特征和光流方向信息熵,并组合成最终的检测特征,最后使用稀疏组合学习算法在各分区中学习一个初始稀疏组合集,通过重构误差判断新数据是否异常,并使用正常数据在线更新稀疏组合集。应用本发明,不仅解决了监控视频中存在的透视变形问题,还充分利用不同光流幅值区间内运动信息的差异,可以获得更精确的运动速度信息。本发明适用于监控视频的异常检测,计算复杂度较低,检测结果准确,算法鲁棒性好。本发明在视频分析技术领域有着广泛的应用。

    一种基于全局先验和局部上下文的深度学习显著性检测方法

    公开(公告)号:CN107274419B

    公开(公告)日:2020-10-13

    申请号:CN201710555319.4

    申请日:2017-07-10

    Abstract: 本发明公开一种基于全局先验和局部上下文的深度学习显著性检测方法,首先对彩色图像和深度图像进行超像素分割,基于每个超像素的紧凑性、独特性和背景性等中层特征,获得每个超像素的全局先验特征图,并进一步通过深度学习模型,得到全局先验显著图;然后,结合全局先验显著图和彩色图像与深度图像中的局部上下文信息,通过深度学习模型,得到初始显著图;最后,依据空间一致性和外观相似性优化初始显著图,得到最终显著图。应用本发明,解决了传统显著性检测方法无法有效检测到复杂背景图像中的显著物体,还解决了现有的基于深度学习的显著性检测方法由于提取出的高层特征存在噪声而导致误检的问题。

    一种基于背景先验的显著性检测方法

    公开(公告)号:CN108154150B

    公开(公告)日:2021-07-23

    申请号:CN201711369001.3

    申请日:2017-12-18

    Abstract: 本发明公开一种基于背景先验的显著性检测方法,首先将彩色图像及深度图像作为输入,然后通过预处理操作对输入的图像进行超像素分割及深度图质量评估,然后基于深度选择性差异和背景先验,计算每个超像素区域的初始显著值,最后通过代价函数的最小化对初始显著图进行优化,从而得到最终的显著性检测结果。应用本发明,不仅解决了传统的基于彩色图像的显著性检测方法无法检测到与背景具有相似视觉特征物体的问题,还解决了仅仅依靠深度信息进行显著性检测时,无法忽略底部背景区域而导致的误检问题。本发明适用于同时具有彩色图像及深度图像时的显著性检测,总体效果良好,能有效地检测出显著物体,准确率较高。

    一种基于双目视觉的车载视频异常运动检测方法

    公开(公告)号:CN107480646B

    公开(公告)日:2020-09-25

    申请号:CN201710722400.7

    申请日:2017-08-22

    Abstract: 本发明公开一种基于双目视觉的车载视频异常运动检测方法,根据双目图像中特征点的真实距离,将特征点划分为多层,并基于每层特征点运动模型的不同,进一步将每层特征点分为不同集合,对每个运动模型对应的特征点集合进行聚类,从而得到一系列待检测的异常运动区域,根据每个区域的异常运动参数:光流幅值、光流方向、真实距离以及所属车道线,通过建立的异常运动检测模型,计算每个待检测区域的异常性值,从而得到图像中的异常运动区域。本发明提供的基于双目视觉的车载视频异常运动检测方法能有效地检测出车载视频中的异常运动区域,以及该异常运动区域对自车的威胁大小。

    一种基于深度选择性差异的显著性检测方法

    公开(公告)号:CN106991669B

    公开(公告)日:2019-09-27

    申请号:CN201710150961.4

    申请日:2017-03-14

    Abstract: 本发明提供了一种基于深度选择性差异的显著性检测方法。该方法首先获取深度图像作为输入,然后对每一张深度图像进行平滑处理,接着计算每一个分割区域的选择性差异值,最后依据中心偏好优化初始显著图,从而得到最终的显著性检测结果。应用本发明,不仅解决了单纯基于彩色图无法检测到与背景具有相似视觉特征物体的问题,还解决了基于深度图像忽略底部背景区域从而导致误检的问题。本发明适用于深度图像的显著性检测,计算复杂度较低,检测结果准确。本发明在图像处理和计算机视觉领域有着广泛的应用。

    一种基于双目视觉的车载视频异常运动检测方法

    公开(公告)号:CN107480646A

    公开(公告)日:2017-12-15

    申请号:CN201710722400.7

    申请日:2017-08-22

    Abstract: 本发明公开一种基于双目视觉的车载视频异常运动检测方法,根据双目图像中特征点的真实距离,将特征点划分为多层,并基于每层特征点运动模型的不同,进一步将每层特征点分为不同集合,对每个运动模型对应的特征点集合进行聚类,从而得到一系列待检测的异常运动区域,根据每个区域的异常运动参数:光流幅值、光流方向、真实距离以及所属车道线,通过建立的异常运动检测模型,计算每个待检测区域的异常性值,从而得到图像中的异常运动区域。本发明提供的基于双目视觉的车载视频异常运动检测方法能有效地检测出车载视频中的异常运动区域,以及该异常运动区域对自车的威胁大小。

    一种基于多区域变尺度3D-HOF的监控视频异常检测方法

    公开(公告)号:CN107967440B

    公开(公告)日:2021-03-30

    申请号:CN201710845420.3

    申请日:2017-09-19

    Abstract: 本发明公开一种基于多区域变尺度3D‑HOF的监控视频异常检测方法,首先获取监控视频作为输入,对视频进行分区处理,然后提取各分区内的变尺度3D‑HOF特征和光流方向信息熵,并组合成最终的检测特征,最后使用稀疏组合学习算法在各分区中学习一个初始稀疏组合集,通过重构误差判断新数据是否异常,并使用正常数据在线更新稀疏组合集。应用本发明,不仅解决了监控视频中存在的透视变形问题,还充分利用不同光流幅值区间内运动信息的差异,可以获得更精确的运动速度信息。本发明适用于监控视频的异常检测,计算复杂度较低,检测结果准确,算法鲁棒性好。本发明在视频分析技术领域有着广泛的应用。

Patent Agency Ranking