-
公开(公告)号:CN111540437B
公开(公告)日:2023-05-12
申请号:CN202010328992.6
申请日:2020-04-23
Applicant: 北京大学第三医院(北京大学第三临床医学院)
IPC: G16H20/40 , G06F18/2431 , G06F18/214 , G06N20/00
Abstract: 本发明提供一种基于人工智能的剂量验证方法及系统,该方法包括:获取调强放疗计划的射野面积、射野调制复杂度、叶片运动和剂量特征参数;建立基于机器学习模型的回归模型,将所述特征参数作为所述机器学习模型的输入样本,设定标准γ通过率作为所述机器学习模型的输出;建立基于机器学习模型的分类模型,将所述特征参数作为所述机器学习模型的输入样本,所述标准γ通过率作为机器学习模型的输出;进行样本训练得到最佳预测的回归模型和分类模型,并根据所述最佳预测模型对待验证的所述特征参数进行预测γ通过率,进而对临床调强放疗计划进行预测和分类。本发明能解决现有放疗剂量验证工作存在花费时间长、人力成本高的问题,能提高效率和质量。
-
公开(公告)号:CN111540437A
公开(公告)日:2020-08-14
申请号:CN202010328992.6
申请日:2020-04-23
Applicant: 北京大学第三医院(北京大学第三临床医学院)
Abstract: 本发明提供一种基于人工智能的剂量验证方法及系统,该方法包括:获取调强放疗计划的射野面积、射野调制复杂度、叶片运动和剂量特征参数;建立基于机器学习模型的回归模型,将所述特征参数作为所述机器学习模型的输入样本,设定标准γ通过率作为所述机器学习模型的输出;建立基于机器学习模型的分类模型,将所述特征参数作为所述机器学习模型的输入样本,所述标准γ通过率作为机器学习模型的输出;进行样本训练得到最佳预测的回归模型和分类模型,并根据所述最佳预测模型对待验证的所述特征参数进行预测γ通过率,进而对临床调强放疗计划进行预测和分类。本发明能解决现有放疗剂量验证工作存在花费时间长、人力成本高的问题,能提高效率和质量。
-
公开(公告)号:CN117797419B
公开(公告)日:2025-02-25
申请号:CN202410125896.X
申请日:2024-01-30
Applicant: 北京大学第三医院(北京大学第三临床医学院)
IPC: A61N5/10 , G16H20/40 , G06N3/0475 , G06N3/094 , G06F18/213 , G06F18/214 , G06F18/24 , G06F18/25 , G06F18/21
Abstract: 本发明提供了一种容积调强放射治疗的检测方法及相关设备,应用于数据处理技术领域。本申请获取训练数据集和目标数据集;对训练数据集和目标数据集进行预处理,生成带有标识信息的训练数据集和带有标识信息的目标数据集;基于生成对抗网络和深度学习模型构建初始深度混合学习模型;基于带有标识信息的训练数据集对初始深度混合学习模型进行训练,生成目标深度混合学习模型;基于目标深度混合学习模型对目标数据集进行处理,生成剂量验证结果。通过基于生成对抗网络和深度学习模型构建深度混合学习模型作为多机构VMAT患者剂量验证的通用框架,进而消除来自多个机构变量之间的异质性,达到了为临床PSQA提供了更准确、计算成本更低的目的。
-
公开(公告)号:CN117797419A
公开(公告)日:2024-04-02
申请号:CN202410125896.X
申请日:2024-01-30
Applicant: 北京大学第三医院(北京大学第三临床医学院)
IPC: A61N5/10 , G16H20/40 , G06N3/0475 , G06N3/094 , G06F18/213 , G06F18/214 , G06F18/24 , G06F18/25 , G06F18/21
Abstract: 本发明提供了一种容积调强放射治疗的检测方法及相关设备,应用于数据处理技术领域。本申请获取训练数据集和目标数据集;对训练数据集和目标数据集进行预处理,生成带有标识信息的训练数据集和带有标识信息的目标数据集;基于生成对抗网络和深度学习模型构建初始深度混合学习模型;基于带有标识信息的训练数据集对初始深度混合学习模型进行训练,生成目标深度混合学习模型;基于目标深度混合学习模型对目标数据集进行处理,生成剂量验证结果。通过基于生成对抗网络和深度学习模型构建深度混合学习模型作为多机构VMAT患者剂量验证的通用框架,进而消除来自多个机构变量之间的异质性,达到了为临床PSQA提供了更准确、计算成本更低的目的。
-
-
-