-
公开(公告)号:CN118516738A
公开(公告)日:2024-08-20
申请号:CN202410702870.7
申请日:2024-05-31
Applicant: 北京大学东莞光电研究院
Abstract: 本发明公开了一种Ga源自动化补充装置及控制方法,其中Ga源自动化补充装置中的第一导线的第一端与控制器电连接,第一导线的第二端始终浸没在高温熔体中;进液管的第一端与加液装置连通,进液管的第二端浸没在高温熔体内,并且,当高温熔体的液面下降时,进液管的第二端与高温熔体相分离;第二导线的第一端与进液管电连接或进入于进液管内与其内部的Ga液电连接,第二导线的第二端与控制器电连接;第一导线、第二导线、高温熔体、进液管或Ga液以及控制器构成闭合电路,控制器通过闭合电路的电流控制驱动件,驱动件与加液装置连接。上述设计中,利用闭合电路的原理解决GaN晶体生长过程中液相液面下降的问题,确保了GaN晶体质量稳定。
-
公开(公告)号:CN118668282A
公开(公告)日:2024-09-20
申请号:CN202410715034.2
申请日:2024-06-04
Applicant: 北京大学东莞光电研究院
Abstract: 本发明公开一种GaN单晶生长装置及其方法,包括:籽晶;加热组件;反应釜,所述加热组件设置于反应釜外侧,反应釜用于容纳反应原料和籽晶;升降机构,升降机构包括固定部、升降部和悬挂部,固定部设置于反应釜的外部,悬挂部设置于反应釜的内部,升降部的一端连接于所述固定部,升降部的另一端穿过反应釜的上端连接于悬挂部,籽晶设置于悬挂部;旋转机构,反应釜固定于旋转机构上。本发明通过反应釜的旋转实现籽晶的提升与下降,实现当N离子浓度较高时,籽晶浸入熔体,当N离子浓度较低时,籽晶与熔体分离,可以间断性控制GaN单晶的生长,保证了籽晶一直处于N离子的高浓度环境中,提高了GaN单晶的生长质量。
-
公开(公告)号:CN117954331A
公开(公告)日:2024-04-30
申请号:CN202410353818.5
申请日:2024-03-27
Applicant: 北京大学东莞光电研究院
IPC: H01L21/48 , H01L23/367 , H01L23/373 , H01L21/683 , C23C16/27 , B82Y30/00
Abstract: 本发明公开了一种金刚石复合散热基板的制备方法及金刚石复合散热基板,包括以下步骤:S1、取异质衬底,活化异质衬底抛光面,在异质衬底抛光面旋涂纳米金刚石分散液并甩干;S2、用CVD金刚石生长设备在异质衬底的抛光面上生长多晶金刚石膜;S3、将多晶金刚石膜进行剥离;S4、在导热基片上涂覆纳米浆料,然后将多晶金刚石膜的生长面粘贴在纳米浆料;S5、粘贴有多晶金刚石膜的导热基片进行热压烧结,形成金刚石复合散热基板。上述制备方法中,复合异质衬底的多晶金刚石膜成核面不需要抛光即可达到纳米级粗糙度,方便与器件的结合。其次,使用超薄的多晶金刚石膜与导热基片进行结合,可以在导热效果与制造成本方面获得高的性价比。
-
公开(公告)号:CN114318524A
公开(公告)日:2022-04-12
申请号:CN202111629561.4
申请日:2021-12-28
Applicant: 北京大学东莞光电研究院
Abstract: 本发明涉及一种用于调控晶圆外延生长均匀性的装置及方法,该用于调控晶圆外延生长均匀性的装置包括加热炉、托盘、支撑杆、温度传感器、引线及温度控制模块,托盘与支撑杆均安装于加热炉内,托盘用于放置生长晶圆或测温晶圆,支撑杆连接托盘,支撑杆用于驱动托盘转动;温度传感器安装于托盘上,引线的一端连接温度传感器,另一端连接温度控制模块,引线穿设支撑杆,并用粘接剂密封;工作时,生长晶圆或测温晶圆用于放置于温度传感器上。本装置通过温度传感器实时监测生长晶圆或测温晶圆的表面温度,且将监测的温度在线反馈至温度控制模块进行控温,测温和控温精确,确保调控晶圆外延生长的均匀性,实现大尺寸晶圆生长的一致性。
-
公开(公告)号:CN119061461A
公开(公告)日:2024-12-03
申请号:CN202411314662.6
申请日:2024-09-19
Applicant: 北京大学东莞光电研究院
Abstract: 本发明公开了一种自动调节氮化镓晶体生长的坩埚装置、生长设备以及生长方法,其中,本发明中的坩埚装置包括第一坩埚、活塞以及驱动件;第一坩埚为中空结构,活塞滑动设置于中空结构内且活塞的外周边缘与第一坩埚的内侧壁密封配合,活塞与中空结构构成用于容置高温熔体的容置腔,驱动件与活塞连接并驱动活塞在中空结构内上下滑动以调节容置腔的容量;第一坩埚的内侧壁与第一坩埚的外侧壁之间还设置有溢流槽,溢流槽的顶部槽口与容置腔的顶部开口相连通。上述设计中,通过调节高温熔体的高度,能够将高温熔体表层的杂质流出高温熔体,从而有效增加氮气与高温熔体的接触面积以使氮气更快地在熔体表面解离成N离子,进而促进GaN单晶的生长。
-
公开(公告)号:CN119041003A
公开(公告)日:2024-11-29
申请号:CN202411269545.2
申请日:2024-09-10
Applicant: 北京大学东莞光电研究院
Abstract: 本发明公开了一种助熔剂法生长GaN单晶的搅拌装置、生长设备以及生长方法,其中搅拌装置包括固定架、转轴、旋转传动组件以及装载有熔体的反应釜;转轴连接有驱动件,驱动件用于驱动转轴绕其自身轴线旋转,转轴的外侧连接有至少一个第一传动轴,反应釜转动连接于第一传动轴上,并且反应釜上开设有用于供氮气输入的进气通道,固定架围绕转轴设置,并且反应釜通过旋转传动组件与固定架连接;驱动件驱动转轴旋转时,反应釜绕转轴的轴线进行公转,并且,反应釜通过旋转传动组件绕其自身轴线进行自转。通过上述设计,能够有效解决现有生长GaN单晶的搅拌装置的搅拌效果较差,导致N离子的解离速度较低,无法有效使N离子均匀分布于熔体中的技术问题。
-
公开(公告)号:CN118516770A
公开(公告)日:2024-08-20
申请号:CN202410706054.3
申请日:2024-05-31
Applicant: 北京大学东莞光电研究院
Abstract: 本发明公开了一种用于单晶生长的旋转摇摆式装置,涉及于半导体设备技术领域。用于单晶生长的旋转摇摆式装置包括旋转组件、反应釜和第一推杆;旋转组件包括有旋转驱动件和凹型盘;方形凹槽的底壁面为向下凹入的第一曲面;反应釜的底部端面为向下凸出的第二曲面;第一曲面部分与第二曲面部分相抵接,反应釜可摆动地设置于方形凹槽;反应釜的横截面为椭圆形,椭圆形的长轴的长度为a;第一推杆靠近反应釜的一端与反应釜的中心轴线之间间隔的距离为n,n
-
公开(公告)号:CN115928204A
公开(公告)日:2023-04-07
申请号:CN202211727679.5
申请日:2022-12-27
Applicant: 北京大学东莞光电研究院
Abstract: 本发明提供了一种用于气相外延生长的防返流气体输运装置及方法,该装置呈喷头结构,至少包括多路管道进气口、多路气体输运管道、多路管道出气口、喷口多路管道出气口、一内置反应室、及多处变径防返流板。通过在多路管道出气口处设置防返流板,形成类漏斗式结构,避免因多路管道出气口横截面积小、流速大、压强小而导致出气管口受周围气体影响形成湍流乃至导致流体返流。本发明通过调控喷口多路管道出气口压强差的方法,避免喷口因单一管道出气口流速过大而出现虹吸返流现象。调控气流层流输运,可以有效减少预反应产生的颗粒,进而提高晶体质量。本发明结构简单,易于制造且实用性较强,具有极高的商业价值。
-
公开(公告)号:CN118516739A
公开(公告)日:2024-08-20
申请号:CN202410702912.7
申请日:2024-05-31
Applicant: 北京大学东莞光电研究院
Abstract: 本发明公开了一种氮化镓单晶生长装置和方法,其包括轴承件、搅拌件和反应釜,轴承件包括内圈、外圈以及设于内圈和外圈之间的滚珠,内圈包括内圈上部和内圈下部,外圈的圆心到内圈上部内壁的间距不小于外圈的圆心到内圈下部内壁的间距,内圈上部的壁厚小于内圈下部的壁厚,固定部连接内圈下部,并设有凹槽,籽晶限位于凹槽,固定槽、籽晶、连接件、内圈的总体的重心要低于反应釜的转轴,再加上滚珠的无摩擦滑动,反应釜旋转时,固定槽和籽晶能保持水平状态,外圈的圆心在反应釜转轴上,搅拌件连接反应釜,反应釜带动搅拌件和外圈转动,其解决了籽晶随反应釜翻转进而影响氮化镓单晶生长方向性的问题,促进了氮气的解离并使氮离子在熔体均匀分布。
-
公开(公告)号:CN117954331B
公开(公告)日:2024-07-19
申请号:CN202410353818.5
申请日:2024-03-27
Applicant: 北京大学东莞光电研究院
IPC: H01L21/48 , H01L23/367 , H01L23/373 , H01L21/683 , C23C16/27 , B82Y30/00
Abstract: 本发明公开了一种金刚石复合散热基板的制备方法及金刚石复合散热基板,包括以下步骤:S1、取异质衬底,活化异质衬底抛光面,在异质衬底抛光面旋涂纳米金刚石分散液并甩干;S2、用CVD金刚石生长设备在异质衬底的抛光面上生长多晶金刚石膜;S3、将多晶金刚石膜进行剥离;S4、在导热基片上涂覆纳米浆料,然后将多晶金刚石膜的生长面粘贴在纳米浆料;S5、粘贴有多晶金刚石膜的导热基片进行热压烧结,形成金刚石复合散热基板。上述制备方法中,复合异质衬底的多晶金刚石膜成核面不需要抛光即可达到纳米级粗糙度,方便与器件的结合。其次,使用超薄的多晶金刚石膜与导热基片进行结合,可以在导热效果与制造成本方面获得高的性价比。
-
-
-
-
-
-
-
-
-