一种局部视觉特征选择方法及装置

    公开(公告)号:CN106326395A

    公开(公告)日:2017-01-11

    申请号:CN201610687614.0

    申请日:2016-08-18

    Applicant: 北京大学

    CPC classification number: G06F16/5838 G06K9/4671 G06K9/6201

    Abstract: 本发明提供了一种局部视觉特征选择方法及装置,所述方法包括:检测获取目标图像中的多个局部视觉特征,并获得每个局部视觉特征的自有属性;获得部分或全部所述局部视觉特征的深度属性;根据所述每个局部视觉特征的自有属性,以及部分或全部局部视觉特征的深度属性,采用预先建立的特征选择模型获得所述每个局部视觉特征位于查询目标中的可能性数值;按照所述可能性数值从高到低的顺序选择预设数量的局部视觉特征作为局部视觉特征子集。本发明使得在局部视觉特征子集内特征数目较少的配置下,仍然能够使得选择出的局部视觉特征尽可能多地包含位于查询目标中的局部视觉特征,在保持视觉特征描述子紧凑表达的前提下保证较为可靠的检索结果。

    一种局部视觉特征选择方法及装置

    公开(公告)号:CN106326395B

    公开(公告)日:2019-05-28

    申请号:CN201610687614.0

    申请日:2016-08-18

    Applicant: 北京大学

    Abstract: 本发明提供了一种局部视觉特征选择方法及装置,所述方法包括:检测获取目标图像中的多个局部视觉特征,并获得每个局部视觉特征的自有属性;获得部分或全部所述局部视觉特征的深度属性;根据所述每个局部视觉特征的自有属性,以及部分或全部局部视觉特征的深度属性,采用预先建立的特征选择模型获得所述每个局部视觉特征位于查询目标中的可能性数值;按照所述可能性数值从高到低的顺序选择预设数量的局部视觉特征作为局部视觉特征子集。本发明使得在局部视觉特征子集内特征数目较少的配置下,仍然能够使得选择出的局部视觉特征尽可能多地包含位于查询目标中的局部视觉特征,在保持视觉特征描述子紧凑表达的前提下保证较为可靠的检索结果。

Patent Agency Ranking