-
公开(公告)号:CN113932782A
公开(公告)日:2022-01-14
申请号:CN202111202909.1
申请日:2021-10-15
Applicant: 北京卫星环境工程研究所
Abstract: 本发明公开了一种适用于航天器大尺寸舱体结构坐标系建立及基准转移的方法,包括激光跟踪仪、标准转换器、电子经纬仪、航天器舱体基准立方镜、航天器舱体特征点、计算机软件系统。本发明中,利用此方法进行航天器舱体结构坐标系的建立及基准转移过程中,通过标准转换器2的运用,无需人员进行瞄准操作,且充分发挥了激光跟踪的高精度测点、电子经纬仪高精度测角等优势,巧妙的完成了结构坐标系与光学坐标系的转换传递,克服了以往航天器结构坐标系建立及基准转移单一电子经纬仪测量方法的缺点。
-
公开(公告)号:CN104457688B
公开(公告)日:2017-02-22
申请号:CN201410654349.7
申请日:2014-11-17
Applicant: 北京卫星环境工程研究所
Abstract: 本发明公开了一种卫星上批量设备姿态角度矩阵的高精度自动化测量装置,该装置将带有CCD成像和自动准直功能的经纬仪、视觉搜索相机、精密转台、精密导轨等装置进行集成,将被测卫星固定于精密转台上,根据卫星上多个待测设备的理论安装位置,通过精密导轨、精密转台进行测量装置的自动定位,再在小范围内通过视觉搜索相机对基准立方镜进行图像识别和搜索实现自动精确准直,最终实现批量设备姿态角度矩阵的自动化测量。本发明的卫星上批量设备姿态角度矩阵的高精度自动化测量装置,在有理论安装数据的条件下,可实现以光学立方镜为基准的不同设备之间姿态角度矩阵的自动化测量,测量精度优于5″,测量效率可以达到每分钟一项。
-
公开(公告)号:CN113932782B
公开(公告)日:2023-05-26
申请号:CN202111202909.1
申请日:2021-10-15
Applicant: 北京卫星环境工程研究所
Abstract: 本发明公开了一种适用于航天器大尺寸舱体结构坐标系建立及基准转移的方法,包括激光跟踪仪、标准转换器、电子经纬仪、航天器舱体基准立方镜、航天器舱体特征点、计算机软件系统。本发明中,利用此方法进行航天器舱体结构坐标系的建立及基准转移过程中,通过标准转换器2的运用,无需人员进行瞄准操作,且充分发挥了激光跟踪的高精度测点、电子经纬仪高精度测角等优势,巧妙的完成了结构坐标系与光学坐标系的转换传递,克服了以往航天器结构坐标系建立及基准转移单一电子经纬仪测量方法的缺点。
-
公开(公告)号:CN104457688A
公开(公告)日:2015-03-25
申请号:CN201410654349.7
申请日:2014-11-17
Applicant: 北京卫星环境工程研究所
Abstract: 本发明公开了一种卫星上批量设备姿态角度矩阵的高精度自动化测量装置,该装置将带有CCD成像和自动准直功能的经纬仪、视觉搜索相机、精密转台、精密导轨等装置进行集成,将被测卫星固定于精密转台上,根据卫星上多个待测设备的理论安装位置,通过精密导轨、精密转台进行测量装置的自动定位,再在小范围内通过视觉搜索相机对基准立方镜进行图像识别和搜索实现自动精确准直,最终实现批量设备姿态角度矩阵的自动化测量。本发明的卫星上批量设备姿态角度矩阵的高精度自动化测量装置,在有理论安装数据的条件下,可实现以光学立方镜为基准的不同设备之间姿态角度矩阵的自动化测量,测量精度优于5″,测量效率可以达到每分钟一项。
-
公开(公告)号:CN103604411A
公开(公告)日:2014-02-26
申请号:CN201310553352.5
申请日:2013-11-08
Applicant: 北京卫星环境工程研究所
IPC: G01C1/04
CPC classification number: G01C1/04
Abstract: 本发明公开了一种基于图像识别的自动经纬仪准直测量方法,其测量设备由内置驱动马达的电子经纬仪、微型测量相机和固定工装组成,通过微型测量相机对电子经纬仪进行自动准直测量的引导,标定图像平面坐标系与经纬仪目镜十字丝观测坐标系间的转换关系以及标定焦距处于准直观测状态下电子经纬仪偏转角度量与微型测量相机像素数量的关系,自动提取准直返回光和电子经纬仪目镜十字丝和偏差关系并直到准直。本发明采用的基于图像识别的经纬仪自动准直方法,由图像记录和分析的方法替代传统的人眼观测的方法,保证了在长时间测量情况下的测量稳定性,提高了测量的工作效率。
-
公开(公告)号:CN115752391A
公开(公告)日:2023-03-07
申请号:CN202211142558.4
申请日:2022-09-20
Applicant: 北京卫星环境工程研究所
IPC: G01C15/00
Abstract: 本发明公开了一种航天器总装过程中的设备安装精度调测方法,包括整器基准立方镜、电子经纬仪一、电子经纬仪二、被测设备立方镜、电子经纬仪三、电子经纬仪四、计算机测试系统和多串口服务器。本发明中,提出一种航天器总装过程中的设备安装精度调测方法,完成了测量设备坐标系同测量基准坐标系的统一,解决了某些设备坐标系同基准坐标系不重合导致调测效率低、中间迭代过程繁琐、调测效果欠佳的情况,提高了设备调测效率和调测精度,可以快速完成各种安装姿态设备的安装精度调整测量。
-
公开(公告)号:CN108413988B
公开(公告)日:2020-09-15
申请号:CN201810203891.9
申请日:2018-03-13
Applicant: 北京卫星环境工程研究所
Inventor: 隆昌宇 , 易旺民 , 张彬 , 胡瑞钦 , 阮国伟 , 王伟 , 陶力 , 孟少华 , 陈畅宇 , 任春珍 , 郭洁瑛 , 刘笑 , 段晨旭 , 金帮华 , 张禹杭 , 季宇 , 胡德垚
IPC: G01C25/00
Abstract: 本发明公开了一种航天器设备位姿自动测量系统机器人末端经纬仪快速标定方法,该方法通过现场布置4个以上公共靶标点,利用跟踪仪和一台经纬仪分别对公共靶标点Pi进行测量,获得公共靶标点在激光跟踪仪坐标系下的三维坐标以及在经纬仪坐标系下的方位角;再根据公共靶标点三维坐标、距离以及公共靶标点方位角,最终确定经纬仪坐标系与激光跟踪仪坐标系之间的相对方位关系。本发明摆脱传统利用两台经纬仪同时对多点进行测量的机器人末端经纬仪标定方法,大大提高机器人末端经纬仪现场标定过程的效率及便捷性,同时充分发挥经纬仪测角及跟踪仪测点位精度高的优势,有效提高机器人末端经纬仪标定精度,姿态标定精度优于5″,位置标定精度优于0.05mm。
-
公开(公告)号:CN108413988A
公开(公告)日:2018-08-17
申请号:CN201810203891.9
申请日:2018-03-13
Applicant: 北京卫星环境工程研究所
Inventor: 隆昌宇 , 易旺民 , 张彬 , 胡瑞钦 , 阮国伟 , 王伟 , 陶力 , 孟少华 , 陈畅宇 , 任春珍 , 郭洁瑛 , 刘笑 , 段晨旭 , 金帮华 , 张禹杭 , 季宇 , 胡德垚
IPC: G01C25/00
Abstract: 本发明公开了一种航天器设备位姿自动测量系统机器人末端经纬仪快速标定方法,该方法通过现场布置4个以上公共靶标点,利用跟踪仪和一台经纬仪分别对公共靶标点Pi进行测量,获得公共靶标点在激光跟踪仪坐标系下的三维坐标以及在经纬仪坐标系下的方位角;再根据公共靶标点三维坐标、距离以及公共靶标点方位角,最终确定经纬仪坐标系与激光跟踪仪坐标系之间的相对方位关系。本发明摆脱传统利用两台经纬仪同时对多点进行测量的机器人末端经纬仪标定方法,大大提高机器人末端经纬仪现场标定过程的效率及便捷性,同时充分发挥经纬仪测角及跟踪仪测点位精度高的优势,有效提高机器人末端经纬仪标定精度,姿态标定精度优于5″,位置标定精度优于0.05mm。
-
公开(公告)号:CN104596420B
公开(公告)日:2017-06-16
申请号:CN201510037500.7
申请日:2015-01-26
Applicant: 北京卫星环境工程研究所
IPC: G01B11/00
Abstract: 本发明公开了一种基准立方镜中心位置的精测方法,利用激光跟踪仪测量系统实现对立方镜中心位置的测量,该方法在飞船二期型号中得到了充分的验证。具体方法是:通过激光跟踪仪及标准配置的0.5″的小靶镜,对基准立方镜的三个正交面进行点位测量,利用最小二乘拟合计算每个面的平面,再通过三个正交面平移拟合计算成三个坐标系,坐标原点即为所要的基准立方镜中心位置。本发明完全取代了用经纬仪测量基准立方镜中心位置的方法,满足在10m范围内测量基准立方镜中心位置精度在0.07mm的精度,测量精度受仪器摆放的位置的影响小,测量精度稳定,精度高,速度快,大大提高了测量效率。
-
公开(公告)号:CN103604411B
公开(公告)日:2017-01-11
申请号:CN201310553352.5
申请日:2013-11-08
Applicant: 北京卫星环境工程研究所
IPC: G01C1/04
Abstract: 本发明公开了一种基于图像识别的自动经纬仪准直测量方法,其测量设备由内置驱动马达的电子经纬仪、微型测量相机和固定工装组成,通过微型测量相机对电子经纬仪进行自动准直测量的引导,标定图像平面坐标系与经纬仪目镜十字丝观测坐标系间的转换关系以及标定焦距处于准直观测状态下电子经纬仪偏转角度量与微型测量相机像素数量的关系,自动提取准直返回光和电子经纬仪目镜十字丝和偏差关系并直到准直。本发明采用的基于图像识别的经纬仪自动准直方法,由图像记录和分析的方法替代传统的人眼观测的方法,保证了在长时间测量情况下的测量稳定性,提高了测量的工作效率。
-
-
-
-
-
-
-
-
-