基于深度学习模型的滚动轴承寿命预测方法和装置

    公开(公告)号:CN113326590B

    公开(公告)日:2021-10-29

    申请号:CN202110803411.4

    申请日:2021-07-16

    Abstract: 本申请公开了基于深度学习模型的滚动轴承寿命预测方法和装置,其中,方法包括:获取多个传感器检测的时序信号;将所述时序信号进行数据处理,得到所述时序信号对应的灰度图;对所述灰度图进行标注,得到时序序列数据集和故障识别数据集;将所述故障识别数据集输入至故障识别模型对所述故障识别模型进行训练,得到所述故障识别模型对应的特征参数;构建故障趋势预测模型,并将所述故障识别模型对应的特征参数作为所述故障趋势预测模型的初始参数;将所述时序序列数据集输入至所述故障趋势预测模型中对所述故障趋势预测模型进行训练,并得到所述时序序列数据集对应的剩余寿命,能够对滚动轴承的剩余生命进行准确预测。

    基于深度学习模型的滚动轴承寿命预测方法和装置

    公开(公告)号:CN113326590A

    公开(公告)日:2021-08-31

    申请号:CN202110803411.4

    申请日:2021-07-16

    Abstract: 本申请公开了基于深度学习模型的滚动轴承寿命预测方法和装置,其中,方法包括:获取多个传感器检测的时序信号;将所述时序信号进行数据处理,得到所述时序信号对应的灰度图;对所述灰度图进行标注,得到时序序列数据集和故障识别数据集;将所述故障识别数据集输入至故障识别模型对所述故障识别模型进行训练,得到所述故障识别模型对应的特征参数;构建故障趋势预测模型,并将所述故障识别模型对应的特征参数作为所述故障趋势预测模型的初始参数;将所述时序序列数据集输入至所述故障趋势预测模型中对所述故障趋势预测模型进行训练,并得到所述时序序列数据集对应的剩余寿命,能够对滚动轴承的剩余生命进行准确预测。

Patent Agency Ranking