-
公开(公告)号:CN106096571B
公开(公告)日:2018-11-16
申请号:CN201610461512.7
申请日:2016-06-22
Applicant: 北京化工大学
Abstract: 一种基于EMD特征提取和稀疏表示的细胞分类方法,本方法采用了一种基于EMD的细胞特征提取方法。首先利用正交子空间投影OSP方法对医学高光谱图像进行波段选择,降低维数,减少数据冗余。然后用二维EMD方法对降维后的数据进行特征提取,将数据分解为一系列频率由高到低排列的IMF分量。采用基于稀疏表示的分类器SRC对数据进行分类,通过比较残差来对样本分类,计算得到的残差越小,则将该样本归为到这一类中。基于EMD特征提取和稀疏表示的细胞分类方法中,EMD表现出来很好的时频特性,在高光谱数据特征提取上具有明显的潜力和优势。同时利用基于稀疏表示的分类器SRC,更大大的保证了分类的精度。
-
公开(公告)号:CN106096571A
公开(公告)日:2016-11-09
申请号:CN201610461512.7
申请日:2016-06-22
Applicant: 北京化工大学
CPC classification number: G06K9/6271 , G06K9/0053 , G06K9/3233 , G06K9/46 , G06K2009/4695 , G06T7/0012 , G06T2207/10036 , G06T2207/20036 , G06T2207/30096
Abstract: 一种基于EMD特征提取和稀疏表示的细胞分类方法,本方法采用了一种基于EMD的细胞特征提取方法。首先利用正交子空间投影OSP方法对医学高光谱图像进行波段选择,降低维数,减少数据冗余。然后用二维EMD方法对降维后的数据进行特征提取,将数据分解为一系列频率由高到低排列的IMF分量。采用基于稀疏表示的分类器SRC对数据进行分类,通过比较残差来对样本分类,计算得到的残差越小,则将该样本归为到这一类中。基于EMD特征提取和稀疏表示的细胞分类方法中,EMD表现出来很好的时频特性,在高光谱数据特征提取上具有明显的潜力和优势。同时利用基于稀疏表示的分类器SRC,更大大的保证了分类的精度。
-