一种磁悬浮薄膜双向拉伸装置

    公开(公告)号:CN114147944B

    公开(公告)日:2024-05-28

    申请号:CN202111634513.4

    申请日:2021-12-29

    Abstract: 本发明公开一种磁悬浮薄膜双向拉伸装置,包括吹膜系统、初次冷却系统、慢拉辊、加热系统、横向拉伸系统、快拉辊、二次冷却系统和收卷系统,各部分顺序水平依次排列。横向拉伸系统主要包括电磁铁单体、磁力球、挡板、主动齿轮、变向齿轮和从动齿轮。薄膜在经过慢拉辊后进入加热系统,磁悬浮阵列由初始的平行位置转变为呈一定角度的张开位置,利用电磁原理,通过薄膜外磁悬浮阵列带动悬浮于薄膜内的磁力球共同横向扩张,可达到对薄膜横向拉伸的目的。纵向拉伸依靠调节慢拉辊与快拉辊之间的速度差来达到薄膜纵向拉伸的目的。保证薄膜双向拉伸提高使用性能的同时,简化了传统双向拉伸装置复杂的结构,并避免拉伸处薄膜的表面破损,减少废料的产生。

    碳纤维原丝模外层叠超声锻压降维制造装置

    公开(公告)号:CN114892293B

    公开(公告)日:2023-03-21

    申请号:CN202210520769.0

    申请日:2022-05-12

    Abstract: 本发明公开碳纤维原丝模外层叠超声锻压降维制造装置,主要包括机架、挤出装置、料斗、计量泵、减速器、联轴器、电机、气管、旋转芯棒、吹膜模头、吹膜牵引辊、水槽、初次拉伸装置、模外层叠装置、超声锻压辊、超声波发生器、导向辊、二次拉伸装置、切丝刀盘、薄膜收卷辊和原丝收卷筒,吹膜拉伸辊、初次拉伸辊、模外层叠装置、超声锻压辊置于水槽中,在吹膜过程中通过膜内水蒸气与膜外水槽中水的吸附作用,将石墨、聚丙烯腈和二甲基亚砜混合溶液中二甲基亚砜吸附,并采用模外层叠、超声锻压技术,消除原丝纤维中因溶剂分离所产生微孔缺陷结构的问题,在保证碳纤维原丝制备产量同时,改善原丝内部结构,降低微孔数量与尺寸,提升碳纤维原丝的质量。

    碳纤维原丝模外层叠超声锻压降维制造装置

    公开(公告)号:CN114892293A

    公开(公告)日:2022-08-12

    申请号:CN202210520769.0

    申请日:2022-05-12

    Abstract: 本发明公开碳纤维原丝模外层叠超声锻压降维制造装置,主要包括机架、挤出装置、料斗、计量泵、减速器、联轴器、电机、气管、旋转芯棒、吹膜模头、吹膜牵引辊、水槽、初次拉伸装置、模外层叠装置、超声锻压辊、超声波发生器、导向辊、二次拉伸装置、切丝刀盘、薄膜收卷辊和原丝收卷筒,吹膜拉伸辊、初次拉伸辊、模外层叠装置、超声锻压辊置于水槽中,在吹膜过程中通过膜内水蒸气与膜外水槽中水的吸附作用,将石墨、聚丙烯腈和二甲基亚砜混合溶液中二甲基亚砜吸附,并采用模外层叠、超声锻压技术,消除原丝纤维中因溶剂分离所产生微孔缺陷结构的问题,在保证碳纤维原丝制备产量同时,改善原丝内部结构,降低微孔数量与尺寸,提升碳纤维原丝的质量。

    一种磁悬浮薄膜双向拉伸装置

    公开(公告)号:CN114147944A

    公开(公告)日:2022-03-08

    申请号:CN202111634513.4

    申请日:2021-12-29

    Abstract: 本发明公开一种磁悬浮薄膜双向拉伸装置,包括吹膜系统、初次冷却系统、慢拉辊、加热系统、横向拉伸系统、快拉辊、二次冷却系统和收卷系统,各部分顺序水平依次排列。横向拉伸系统主要包括电磁铁单体、磁力球、挡板、主动齿轮、变向齿轮和从动齿轮。薄膜在经过慢拉辊后进入加热系统,磁悬浮阵列由初始的平行位置转变为呈一定角度的张开位置,利用电磁原理,通过薄膜外磁悬浮阵列带动悬浮于薄膜内的磁力球共同横向扩张,可达到对薄膜横向拉伸的目的。纵向拉伸依靠调节慢拉辊与快拉辊之间的速度差来达到薄膜纵向拉伸的目的。保证薄膜双向拉伸提高使用性能的同时,简化了传统双向拉伸装置复杂的结构,并避免拉伸处薄膜的表面破损,减少废料的产生。

    一种磁悬浮薄膜双向拉伸装置

    公开(公告)号:CN216610031U

    公开(公告)日:2022-05-27

    申请号:CN202123357297.1

    申请日:2021-12-29

    Abstract: 本发明公开一种磁悬浮薄膜双向拉伸装置,包括吹膜系统、初次冷却系统、慢拉辊、加热系统、横向拉伸系统、快拉辊、二次冷却系统和收卷系统,各部分顺序水平依次排列。横向拉伸系统主要包括电磁铁单体、磁力球、挡板、主动齿轮、变向齿轮和从动齿轮。薄膜在经过慢拉辊后进入加热系统,磁悬浮阵列由初始的平行位置转变为呈一定角度的张开位置,利用电磁原理,通过薄膜外磁悬浮阵列带动悬浮于薄膜内的磁力球共同横向扩张,可达到对薄膜横向拉伸的目的。纵向拉伸依靠调节慢拉辊与快拉辊之间的速度差来达到薄膜纵向拉伸的目的。保证薄膜双向拉伸提高使用性能的同时,简化了传统双向拉伸装置复杂的结构,并避免拉伸处薄膜的表面破损,减少废料的产生。

Patent Agency Ranking