-
公开(公告)号:CN110288081A
公开(公告)日:2019-09-27
申请号:CN201910476156.X
申请日:2019-06-03
Abstract: 本发明涉及一种基于FW机制及LSTM的递归网络模型及学习方法,属于递归神经网络以及自然语言处理技术领域。包括基于FW机制及LSTM的递归网络模型及依托的学习方法;前者包括数据导入模块、数据生成模块、加载与迭代模块、参数设定模块、模型定义模块、递归网络训练、评估以及测试模块;学习方法包括:1导入数据;2将导入数据进行拆分得到训练数据、评估数据和测试数据;3根据导入数据,获取预先设定好的配置参数;4完成权重参数的初始化;5将训练、评估和测试数据送入LSTM单元计算输出向量;6计算loss函数,对网络参数进行优化,输出复杂度。所述网络模型及学习方法进一步提升了LSTM模型处理的准确度及收敛速度。