一种障碍物检测方法及系统

    公开(公告)号:CN107169986B

    公开(公告)日:2019-09-17

    申请号:CN201710368864.2

    申请日:2017-05-23

    Abstract: 本发明公开一种障碍物检测方法及系统。所述方法包括:获取N线激光雷达扫描得到的点云数据;将点云数据划分为Q个区域,包括第1区域、第2区域至第Q区域;依次对第1至第Q区域的点云数据进行平面拟合,对应得到第1平面、第2平面至第Q平面;依次获取第1至第Q区域的点云数据中的障碍物的坐标;对所述障碍物的坐标数据进行体素化处理,得到动态障碍物的坐标集合和静态障碍物的坐标集合。采用本发明检测方法及系统,实现了三维点云数据的大规模压缩,大大降低了数据处理量;还进一步把环境划分为三部分:路面区域(可行区域)、静态障碍物区域、动态障碍物区域,为机器人的有效行为决策提供了更好的环境信息。

    一种基于光纤布拉格光栅传感器的探针运动控制方法

    公开(公告)号:CN109708685A

    公开(公告)日:2019-05-03

    申请号:CN201711011640.2

    申请日:2017-10-26

    Abstract: 本发明公开了一种基于光纤布拉格光栅传感器的探针运动控制方法,通过光纤布拉格光栅传感器实时高精度地感知探针受到的应变,进而获取探针与晶圆晶粒的接触情况,实时地调整探针运动状态。本发明使用的系统主要包括:光纤布拉格光栅应变传感器、光纤布拉格光栅温度传感器、数据处理模块和运动控制模块。本发明可避免传统的探针运动过程中,由于对操作人员依赖性强、运动控制系统参与度低、探针探测传感器对探针压力的测量精度低,而导致探针因接触不良或接触过深而引起的误判和晶圆破损现象,弥补了传统探针运动控制方法安全性低、测试效率低和测试结果准确度难以得到保证的缺点,具有安全性高、测试效率高、测试结果准确度高的优点。

    一种新型钟形振子式角速率陀螺

    公开(公告)号:CN104215235B

    公开(公告)日:2017-08-22

    申请号:CN201310220902.1

    申请日:2013-06-05

    CPC classification number: G01C19/5691

    Abstract: 本发明涉及一种具有变厚度轴对称多曲面融合结构特征的钟形振子作为敏感元件的角速率陀螺。该角速率陀螺由钟形振子、振子固定轴、振子底座、气密罩、外壳和系统电路组成。钟形振子包括:钟肩,具有半球壳结构;钟腰,具有圆柱壳结构;钟唇,具有双曲面壳结构。钟形振子、底座以及中轴靠机械固连在一起,形成敏感陀螺效应的核心整体。激励电极、反馈电极、检测电极、阻尼控制电极均匀分布于振子钟腰外壁上,每个电极间设置有电极隔离孔;钟形振子的电容极板分别成对安装于振子内壁与对应中轴上;利用气密罩对核心结构进行密封;利用电路系统对钟形振子振型进行控制,对信号进行处理,同时解算出输入角速率。

    一种高动态载体环境力测量装置

    公开(公告)号:CN106768549A

    公开(公告)日:2017-05-31

    申请号:CN201611139322.X

    申请日:2016-12-12

    Abstract: 本发明公开了一种高动态载体环境力测量装置,其包括轴向加速度计1、轴向加速度计2、横法向加速度计1、横法向加速度计2、横法向加速度计3、横法向加速度计4、轴向陀螺仪1、轴向陀螺仪2、横法向陀螺仪1、横法向陀螺仪2、横法向陀螺仪3、横法向陀螺仪4、轴向磁强计1、轴向磁强计2、横法向磁强计1、横法向磁强计2、横法向磁强计3、横法向磁强计4、信号调理模块、数据采集模块、数据处理模块、数据存储模块、人机交互模块以及电源模块。本发明能够弥补传统环境力测量装置不能够适应上述条件的缺点,具有结构简单、启动速度快、功耗低、体积小、稳定性强、测量精度高的优点。

    一种钟形振子式角速率陀螺振子振幅稳定方法

    公开(公告)号:CN103048925B

    公开(公告)日:2016-05-11

    申请号:CN201210545100.3

    申请日:2012-12-17

    Abstract: 一种钟形振子式角速率陀螺振子振幅稳定方法。该方法包括:(1)利用参考模型和观测到的钟形振子x轴向信号和y轴向信号,计算钟形振子运行误差和误差变化率;(2)对x轴向信号、y轴向信号、振子运行误差和运行误差变化率进行集中滤波与状态重构,重构出新状态x轴向位移、y轴向位移、x轴向位移变化率、y轴向位移变化率、钟形振子运行误差和运行误差变化率;(3)根据给定系统输入与重构的状态,设计自适应滑模控制器,控制钟形振子维持稳定振幅运动。本发明提高了钟形振子式角速率陀螺幅值稳定程度,缩短了稳定时间,并缩短了整个钟形振子式角速率陀螺开发的时间,为钟形振子式角速率陀螺的合理设计提供了依据。

    一种用于消防救援现场的惯性测量单元

    公开(公告)号:CN103954284A

    公开(公告)日:2014-07-30

    申请号:CN201410198797.0

    申请日:2014-05-13

    CPC classification number: G01C21/165

    Abstract: 一种用于消防救援现场的惯性测量单元,该装置包括:惯性信息感知组件、磁场强度感知组件、温度感知组件、环境感知组件、人机交互组件、报警组件、数据处理组件、数据传输组件和电池。本发明主要应用在消防救援与灾害搜救现场等室内环境受到严重破坏的场合,安装在消防员身上,能够弥补传统呼救器不能实时定位、误报警等缺点;同时又能够弥补传统惯性测量单元不能够进行环境感知、声光报警的缺点,具有结构简单、启动速度快、误报警率低、稳定性强、定位精度高、进行险情预判的优点,特别适用于对消防员进行实时定位、现场环境感知和有效安全保障的消防救援现场。

    一种钟形振子式角速率陀螺谐振子频率裂解抑制方法

    公开(公告)号:CN103047978B

    公开(公告)日:2013-11-13

    申请号:CN201210546254.4

    申请日:2012-12-17

    Abstract: 本发明公开了一种钟形振子式角速率陀螺谐振子频率裂解抑制方法,该方法包括:(1)测量已加工钟形振子的实际振型;(2)测量已加工钟形振子的实际频率裂解值;(3)建立有限元模型,仿真钟形振子频率裂解;(4)进行仿真实验,确定切槽方位与切槽深度。本方法有效抑制了钟形振子的频率裂解,提高了钟形振子的整体性能,大大缩短了钟形振子的设计周期,从而缩短了整个钟形振子式角速率陀螺开发的时间,为钟形振子式角速率陀螺的合理设计提供了依据。

    时间同步误差的确定方法及装置、存储介质及电子装置

    公开(公告)号:CN113009816A

    公开(公告)日:2021-06-22

    申请号:CN202110251320.4

    申请日:2021-03-08

    Abstract: 本发明公开了一种时间同步误差的确定方法及装置、存储介质及电子装置,上述方法包括:获取目标对象的观测量,其中,所述观测量用于指示所述目标对象进入导航姿态后的坐标信息与运动状态的测量值;获取预设的目标对象的组合导航矩阵,通过所述组合导航矩阵对所述观测量进行计算,以确定出目标观测矩阵,对所述目标观测矩阵执行目标数据融合处理,以得到所述目标对象的姿态延时的更新时间;获取所述目标对象的接入卫星定位系统的时间间隔,根据所述更新时间和所述时间间隔确定所述目标对象的时间同步误差,解决了相关技术中,对于时间同步误差的确定方式繁琐,使用不便,需要进行大量计算等问题。

    一种高动态载体位姿实时测量装置

    公开(公告)号:CN107449422B

    公开(公告)日:2020-04-28

    申请号:CN201710733971.0

    申请日:2017-08-24

    Abstract: 本发明公开了一种高动态载体位姿实时测量装置,其包括数据采集模块、CPU、数据记录模块、无线数据传输模块、地面数据接收模块、电源模块以及地面电源模块。数据采集模块采集运动载体的GPS数据、磁环境数据和加速度数据传输进CPU,CPU调度数据记录模块存储位姿测量数据,将测量数据发送至无线数据传输模块实时发送到地面数据接收模块。电源模块负责将外界输入电压转换成数据采集模块、CPU、数据记录模块和无线数据传输模块所需的电压。地面电源模块将外界输入电压转换成地面数据接收模块所需的电压。本发明能够弥补传统位姿测量装置设计冗余度高、解算精度差、不能够进行载体GPS数据测量、测量数据更新滞后等缺点,具有结构合理、解算精度高、支持载体GPS数据测量、测量数据实时更新、稳定性强的优点。

    一种自动探针台运动误差补偿方法

    公开(公告)号:CN109709467A

    公开(公告)日:2019-05-03

    申请号:CN201711011836.1

    申请日:2017-10-26

    Abstract: 本发明公开了一种自动探针台运动误差补偿方法,步骤是:1基于多体系统理论,建立自动探针台运动误差模型;2使用多功能激光干涉仪和精密分度台对自动探针台运动误差模型中的误差项进行标定,得到X、Y、Z方向的综合误差补偿值;3将X、Y、Z方向的综合误差补偿值加载到自动探针台的运动控制系统中,实现对自动探针台的运动误差补偿。本发明与传统自动探针台运动误差补偿方法相比,其优点为本发明基于多体系统理论,弥补了传统补偿方法未考虑各运动方向间相互耦合关系,补偿效果不理想的缺点,为合理经济地提高自动探针台的精度提供重要的理论依据,为自动探针台的精度设计提供有效借鉴。

Patent Agency Ranking