-
公开(公告)号:CN108183756A
公开(公告)日:2018-06-19
申请号:CN201711141674.3
申请日:2017-11-17
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: H04B17/336 , H04B17/345 , H04B17/327 , H04B7/185
Abstract: 本发明提出一种基于Ka频段的天地基一体化无线通讯测试方法,其包括以下步骤:选定搭载飞行平台,配套对天、对地设备安装窗口,地基遥测、安控通信链路设计,天基前、返向通信链路设计,地基通信链路天线指向角设计,天基通信链路天线指向角设计,确定飞行航迹,设计预留捕获点,天地基遥测协同引导,天地基遥控协同控制。所述方法是一种可直接应用于航天器载体环境下实现Ka频段天地基一体化无线通信的技术途径,尤其满足Ka频段天基、地基实时协同通信以及多体制、多功能通信要求,可同时具备天基前向扩频遥控、天基返向扩频遥测、地基调频高码率遥测、地基扩频外测、地基扩频遥控、地基扩频引导信标、地基扩频低码率遥测功能。
-
公开(公告)号:CN106788670A
公开(公告)日:2017-05-31
申请号:CN201611051743.7
申请日:2016-11-23
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 邱长泉 , 陈勇 , 薛志超 , 张艳溶 , 袁延荣 , 施睿 , 郭心怡 , 罗晓宇 , 庄传刚 , 贾现普 , 滕迪 , 李少伟 , 张凡 , 艾炜 , 李彬 , 陈燕扬 , 王斌
IPC: H04B7/185
CPC classification number: H04B7/18506
Abstract: 通用高效实时准实时遥测数据处理平台,涉及航空航天、遥测遥控数据处理领域;包括传输层、数据访问层、业务逻辑层和应用层;传输层接收外部飞行器无线检测站传来的遥测数据,转换为遥测数据流,并传输至数据访问层;数据访问层对遥测数据流进行校验,当遥测数据流为完整全帧时,将全帧遥测数据流发送至业务逻辑层;业务逻辑层接收数据访问层传来的全帧遥测数据流,并根据数据访问层中配置参数对全帧遥测数据流进行解析,将各遥测数据转换为遥测数据物理量,并将遥测数据物理量发送至应用层;应用层:接收业务逻辑层的数据解析模块传来的遥测数据物理量,并进行显示。本发明缩短软件研制周期,提高数据处理工作效率。
-
公开(公告)号:CN110187631B
公开(公告)日:2021-04-13
申请号:CN201910556750.X
申请日:2019-06-25
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G04R20/02
Abstract: 一种控制系统的时间对齐方法及系统,时统输出设备用于同时向飞行器计算机、卫星接收机、惯组输出时统信号;卫星接收机根据预定时间间隔向飞行器计算机和惯组发送对时信息,飞行器计算机和惯组均根据授时信息有效性信息判断卫星授时信息是否有效,如果卫星授时信息有效,飞行器计算机和惯组均根据当前时刻卫星授时信息和0时刻卫星授时信息计算飞行器上卫星相对计时时间;根据飞行器计算机的计时时间或惯组的计时时间,与,飞行器上卫星相对计时时间相差,对飞行器计算机的计时时间、惯组的计时时间进行选择性修正,以保证系统时间的有效性和准确性,属于飞行器控制系统。
-
公开(公告)号:CN108183756B
公开(公告)日:2020-10-30
申请号:CN201711141674.3
申请日:2017-11-17
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: H04B17/336 , H04B17/345 , H04B17/327 , H04B7/185
Abstract: 本发明提出一种基于Ka频段的天地基一体化无线通讯测试方法,其包括以下步骤:选定搭载飞行平台,配套对天、对地设备安装窗口,地基遥测、安控通信链路设计,天基前、返向通信链路设计,地基通信链路天线指向角设计,天基通信链路天线指向角设计,确定飞行航迹,设计预留捕获点,天地基遥测协同引导,天地基遥控协同控制。所述方法是一种可直接应用于航天器载体环境下实现Ka频段天地基一体化无线通信的技术途径,尤其满足Ka频段天基、地基实时协同通信以及多体制、多功能通信要求,可同时具备天基前向扩频遥控、天基返向扩频遥测、地基调频高码率遥测、地基扩频外测、地基扩频遥控、地基扩频引导信标、地基扩频低码率遥测功能。
-
公开(公告)号:CN110322675B
公开(公告)日:2020-08-14
申请号:CN201910555640.1
申请日:2019-06-25
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G08C17/02
Abstract: 一种无线发射控制系统,包括飞行器天线、飞行器无线控制器、地面天线、地面远程控制台、计算机;通过特定的通信传输协议,一方面简化了系统设计,另一方面保证了通信协议的可靠性。此外在系统执行控制指令时,针对不同的指令制定了相应的执行策略,既保证了指令执行的效率,又保障了系统工作的安全可靠性;属于测试发射控制系统。
-
公开(公告)号:CN110322675A
公开(公告)日:2019-10-11
申请号:CN201910555640.1
申请日:2019-06-25
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G08C17/02
Abstract: 一种无线发射控制系统,包括飞行器天线、飞行器无线控制器、地面天线、地面远程控制台、计算机;通过特定的通信传输协议,一方面简化了系统设计,另一方面保证了通信协议的可靠性。此外在系统执行控制指令时,针对不同的指令制定了相应的执行策略,既保证了指令执行的效率,又保障了系统工作的安全可靠性;属于测试发射控制系统。
-
公开(公告)号:CN110187631A
公开(公告)日:2019-08-30
申请号:CN201910556750.X
申请日:2019-06-25
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G04R20/02
Abstract: 一种控制系统的时间对齐方法及系统,时统输出设备用于同时向飞行器计算机、卫星接收机、惯组输出时统信号;卫星接收机根据预定时间间隔向飞行器计算机和惯组发送对时信息,飞行器计算机和惯组均根据授时信息有效性信息判断卫星授时信息是否有效,如果卫星授时信息有效,飞行器计算机和惯组均根据当前时刻卫星授时信息和0时刻卫星授时信息计算飞行器上卫星相对计时时间;根据飞行器计算机的计时时间或惯组的计时时间,与,飞行器上卫星相对计时时间相差,对飞行器计算机的计时时间、惯组的计时时间进行选择性修正,以保证系统时间的有效性和准确性,属于飞行器控制系统。
-
公开(公告)号:CN110186581A
公开(公告)日:2019-08-30
申请号:CN201910556767.5
申请日:2019-06-25
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 一种飞行器表面温度传感器及传感器探头,探头采用至少两根热偶丝;以及套装在至少两根热偶丝上的氧化铝陶瓷管;以及套装在氧化铝陶瓷管上的探头外壁;至少选取两根热偶丝在靠近外部被测表面的一端焊接;焊接后的焊点、所述探头外壁靠近外部被测表面的端面均和外部被测表面齐平。本发明温度传感器的外表面开孔小,保证了高密度的测点布置,安装凹陷小使飞行器表面形貌保留完整,通过结构设计保证传感器探头表面齐平、响应速度快、能够适应对流环境,能够获取原始的转捩特性,测量精度高,属于飞行器测量领域。
-
公开(公告)号:CN119788146A
公开(公告)日:2025-04-08
申请号:CN202411695531.7
申请日:2024-11-25
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 陈俊勇 , 魏珂 , 王毅 , 陈超 , 梁瑞卿 , 陈燕扬 , 张运 , 赵翔宇 , 王宇飞 , 陈虎 , 彭晓 , 丁雪 , 王泽齐 , 胡天辰 , 袁延荣 , 武春飞 , 潘明健 , 李瑾 , 髙檗 , 李浩 , 纪祖赑
Abstract: 本发明公开了一种面向多任务复杂环境的无线通讯决策系统,该无线通讯决策系统运行无线通信系统架构中。无线通讯决策系统包括系统初始化模块、多源数据接收模块、精确控制算法模块、动态中继卫星切换模块、高效遥测数据分包模块以及状态监测与链路传输模块等六大核心模块。无线通讯决策系统主要功能是监测航天器运行状态并接收飞行数据,并将数据综合分包通过卫星或地基方式进行遥测传输。在飞行过程中,无线通讯决策系统根据监测到的航天器状态实时制定卫星通信链路控制策略,用来选择通信卫星或控制卫星通信设备进行通信。无线通讯决策系统在无线通信系统架构中处于天线角度控制的关键路径,实时性高,依赖性强。
-
公开(公告)号:CN115437281B
公开(公告)日:2025-03-21
申请号:CN202210907499.9
申请日:2022-07-29
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 刘宇航 , 袁延荣 , 李瑾 , 潘明健 , 邱长泉 , 郑昭虎 , 陈燕扬 , 任亮 , 李少伟 , 张晋 , 施睿 , 叶威 , 孔凡玲 , 刘玥良 , 刘箭言 , 杨亮 , 张伯炜 , 秦永强 , 杨志涛 , 贺梦尧
IPC: G05B19/042
Abstract: 本发明一种应用于主动膨胀落球装置弹出的高可靠分离控制系统,包括:供电电池、控制器和分离开关;分离开关用于敏感整流罩的分离状态;控制器敏感运载器起飞后运载器的轴向飞行过载,在过载电压高过额定阈值后,生成过载信号,对过载信号进行三取二判决,输出经延时处理的解保控制指令;控制器接收到分离开关输出的分离信号,对分离信号进行三取二判决,输出经延时处理的引爆控制指令。采用无线测发控技术,地面测试阶段仅通过手持无线测试终端即可完成整个测发流程,降低了测试场地需求,有效提高了测发效率。
-
-
-
-
-
-
-
-
-