基于深度强化学习的多属性索引选择

    公开(公告)号:CN115017130A

    公开(公告)日:2022-09-06

    申请号:CN202210059183.9

    申请日:2022-01-19

    Abstract: 本发明涉及基于深度强化学习的多属性索引选择,属于数据库与强化学习领域。本发明根据启发式规则从工作负载中提取多属性索引候选项,能够降低训练时的动作空间维度,同时加快模型训练速度和推荐出更优的索引配置。采用基于字段的选择度规则对索引候选项做筛选与提取,例如重复值多的或选择度小于20%的字段,得到用于训练的索引候选项;再将用于训练的索引候选项与工作负载输入到DRLMAIS模型中进行训练;最后将查询语句或一组工作负载放入已经训练好的DRLMAIS模型中,得到对应的索引配置,并进行评估。本发明设计的基于字段的选择性规则能够对多属性索引候选项进行有效筛选减少动作空间,并且减少模型的训练时间同时为工作负载推荐出最优的索引配置。

    基于SQM的数据处理方法、装置、设备及存储介质

    公开(公告)号:CN113568766A

    公开(公告)日:2021-10-29

    申请号:CN202111125566.3

    申请日:2021-09-26

    Abstract: 本发明公开了一种基于SQM的数据处理方法、装置、设备及存储介质,方法包括:接收分部控制端发送的用户创建请求;根据用户创建请求生成对应的调用接口;根据调用接口与分部控制端建立通信,并获取分部控制端的用户信息;解析用户信息以得到用户配置参数,并根据用户配置参数创建对应的用户管理界面。本发明通过根据用户创建请求生成对应的调用接口,然后根据调用接口与分部控制端建立通信,以获取分部控制端的用户信息,并对用户信息进行解析得到用户配置参数,以根据用户配置参数建立对应的用户管理界面,以实现总部控制端和分部控制端的远程数据共享,实现总部控制端统一进行用户监管,提高用户的体验感。

    基于深度强化学习的多属性索引选择

    公开(公告)号:CN115017130B

    公开(公告)日:2024-08-20

    申请号:CN202210059183.9

    申请日:2022-01-19

    Abstract: 本发明涉及基于深度强化学习的多属性索引选择,属于数据库与强化学习领域。本发明根据启发式规则从工作负载中提取多属性索引候选项,能够降低训练时的动作空间维度,同时加快模型训练速度和推荐出更优的索引配置。采用基于字段的选择度规则对索引候选项做筛选与提取,例如重复值多的或选择度小于20%的字段,得到用于训练的索引候选项;再将用于训练的索引候选项与工作负载输入到DRLMAIS模型中进行训练;最后将查询语句或一组工作负载放入已经训练好的DRLMAIS模型中,得到对应的索引配置,并进行评估。本发明设计的基于字段的选择性规则能够对多属性索引候选项进行有效筛选减少动作空间,并且减少模型的训练时间同时为工作负载推荐出最优的索引配置。

    基于SQM的数据处理方法、装置、设备及存储介质

    公开(公告)号:CN113568766B

    公开(公告)日:2022-01-07

    申请号:CN202111125566.3

    申请日:2021-09-26

    Abstract: 本发明公开了一种基于SQM的数据处理方法、装置、设备及存储介质,方法包括:接收分部控制端发送的用户创建请求;根据用户创建请求生成对应的调用接口;根据调用接口与分部控制端建立通信,并获取分部控制端的用户信息;解析用户信息以得到用户配置参数,并根据用户配置参数创建对应的用户管理界面。本发明通过根据用户创建请求生成对应的调用接口,然后根据调用接口与分部控制端建立通信,以获取分部控制端的用户信息,并对用户信息进行解析得到用户配置参数,以根据用户配置参数建立对应的用户管理界面,以实现总部控制端和分部控制端的远程数据共享,实现总部控制端统一进行用户监管,提高用户的体验感。

Patent Agency Ranking