-
公开(公告)号:CN116151354B
公开(公告)日:2023-07-18
申请号:CN202310411396.8
申请日:2023-04-10
Applicant: 之江实验室
Abstract: 本申请涉及一种网络节点的学习方法、装置、电子装置和存储介质,所述方法包括:基于层次标签树中目标网络节点对应的目标标签信息,确定目标注意力向量,所述层次标签树包含多个网络节点的标签信息之间的隶属关系;基于所述目标注意力向量,对多个所述网络节点进行采样,并基于采样结果获取所述目标网络节点的相邻网络节点以及对应的相邻注意力向量;对所述目标注意力向量以及所述相邻注意力向量进行聚合,得到所述目标网络节点的目标表示向量。通过本申请,解决了相关技术中网络节点的表示学习不够准确的技术问题,提高了网络节点表示学习时表示向量的全面性,更有利于挖掘网络节点之间的相似性和关联性,进而提高了网络节点学习的准确性。
-
公开(公告)号:CN116151355B
公开(公告)日:2023-07-11
申请号:CN202310422202.4
申请日:2023-04-19
Applicant: 之江实验室
IPC: G06N3/08 , G06N3/0455 , G06N3/0442 , G06F40/295
Abstract: 本说明书公开了一种模型训练和业务执行的方法、装置、介质及设备。所述模型训练和业务执行的方法包括:将样本语句输入待训练业务模型,确定样本语句对应的初始语义特征,并对初始语义特征进行处理,基于第一膨胀系数和第二膨胀系数对所述处理后特征进行卷积处理,得到中间特征,基于第三膨胀系数和第四膨胀系数对所述中间特征进行卷积处理,得到目标特征,根据目标特征,确定头尾指针矩阵以及字间关系矩阵,根据头尾指针矩阵以及字间关系矩阵,确定目标特征矩阵,基于目标特征矩阵,识别样本语句中包含的实体对象,以最小化识别出的实体对象与样本语句中实际包含的实体对象之间的偏差为优化目标,对业务模型进行训练。
-
公开(公告)号:CN116151354A
公开(公告)日:2023-05-23
申请号:CN202310411396.8
申请日:2023-04-10
Applicant: 之江实验室
Abstract: 本申请涉及一种网络节点的学习方法、装置、电子装置和存储介质,所述方法包括:基于层次标签树中目标网络节点对应的目标标签信息,确定目标注意力向量,所述层次标签树包含多个网络节点的标签信息之间的隶属关系;基于所述目标注意力向量,对多个所述网络节点进行采样,并基于采样结果获取所述目标网络节点的相邻网络节点以及对应的相邻注意力向量;对所述目标注意力向量以及所述相邻注意力向量进行聚合,得到所述目标网络节点的目标表示向量。通过本申请,解决了相关技术中网络节点的表示学习不够准确的技术问题,提高了网络节点表示学习时表示向量的全面性,更有利于挖掘网络节点之间的相似性和关联性,进而提高了网络节点学习的准确性。
-
公开(公告)号:CN114331940B
公开(公告)日:2025-05-23
申请号:CN202111677658.2
申请日:2021-12-31
IPC: G06T5/50
Abstract: 本发明公开了联合局部非局部流形和截断算子的高光谱融合方法及装置,将输入高分辨率多光谱图像划分为不同子块并重构为矩阵形式,所有子块分布于多个低维流形附近;对每一个子块,使用最近邻搜索算法寻找非局部相似图像块,构建非局部相似关系,同时构建每个图像块与周围四个相邻块的相似关系,将局部与非局部相似关系整合获得流形映射矩阵L;对L进行特征分解获得特征基并构建截断算子,将L和截断算子并入高分辨率HSI融合模型,获得最终模型。使用交替方向乘子法ADMM算法优化上述模型,并进行解耦操作,最终使用共轭梯度算法PCG逐波段求解。
-
公开(公告)号:CN116186272B
公开(公告)日:2023-07-14
申请号:CN202310440825.4
申请日:2023-04-23
Applicant: 之江实验室
IPC: G06F16/35 , G06F18/22 , G06F18/214 , G06F18/241
Abstract: 本说明书公开了一种联合训练方法、装置、存储介质及电子设备。在本说明书提供的联合训练方法中,获取样本语句以及对应的标注意图和标注实体,并将样本语句分为支持集和查询集;将每个样本语句输入待训练的语句处理模型;若该样本语句属于所述支持集,则通过提取子网提取该样本语句和标注的特征;将特征输入原型构建子网,确定出与标注对应的标注特征;若该样本语句属于所述查询集,提取该样本语句的特征;通过匹配子网确定特征与匹配子网存储的各标准特征之间的相似度;通过意图识和槽位填充子网分别根据相似度确定预测意图和预测实体;以预测意图和标注意图之间的差异最小,以及预测实体和标注实体之间的差异最小为优化目标,对模型进行训练。
-
公开(公告)号:CN116150380A
公开(公告)日:2023-05-23
申请号:CN202310413634.9
申请日:2023-04-18
Applicant: 之江实验室
IPC: G06F16/35 , G06F18/22 , G06N3/0455 , G06N3/0895
Abstract: 本说明书公开了一种文本匹配方法、装置、存储介质及设备,根据匹配的文本对中各原始文本的表征向量的第一相似度、该文本对中各原始文本与各自变形文本的表征向量间的第二相似度及各原始文本与其他原始文本的表征向量的第三相似度,确定该文本对的损失。该第一相似度与第二相似度皆与该文本对的损失负相关,第三相似度与该文本对的损失正相关。在根据各文本对的损失确定总损失,并以总损失最小为目标训练得到训练后的表征模型后,则可响应于匹配请求,通过训练后的表征模型确定待匹配文本对的表征向量,以根据得到的表征向量确定待匹配文本对的匹配结果。可训练得到可输出准确表征向量的表征模型,提升基于表征模型进行文本匹配的匹配准确度。
-
公开(公告)号:CN114022703B
公开(公告)日:2025-04-04
申请号:CN202111248733.3
申请日:2021-10-26
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了一种基于深度学习的高效车辆细粒度识别方法,它通过构建高效残差结构提取车辆图像特征,然后通过空间通道损失函数提高特征提取网络的细粒度分类能力,使网络更加专注于车辆图像的不同组件区域,保证特征通道的可区分性和可辨别性,并且不增加卷积神经网络推理的计算量。本发明通过深度学习自动提取特征,避免手工设计特征区域的局限性,更能克服车辆图片复杂环境噪音的干扰,并且能通过空间特征损失函数使特征通过关注更丰富的特征区域,提高车辆细粒度识别的准确率。
-
公开(公告)号:CN116150380B
公开(公告)日:2023-06-27
申请号:CN202310413634.9
申请日:2023-04-18
Applicant: 之江实验室
IPC: G06F16/35 , G06F18/22 , G06N3/0455 , G06N3/0895
Abstract: 本说明书公开了一种文本匹配方法、装置、存储介质及设备,根据匹配的文本对中各原始文本的表征向量的第一相似度、该文本对中各原始文本与各自变形文本的表征向量间的第二相似度及各原始文本与其他原始文本的表征向量的第三相似度,确定该文本对的损失。该第一相似度与第二相似度皆与该文本对的损失负相关,第三相似度与该文本对的损失正相关。在根据各文本对的损失确定总损失,并以总损失最小为目标训练得到训练后的表征模型后,则可响应于匹配请求,通过训练后的表征模型确定待匹配文本对的表征向量,以根据得到的表征向量确定待匹配文本对的匹配结果。可训练得到可输出准确表征向量的表征模型,提升基于表征模型进行文本匹配的匹配准确度。
-
公开(公告)号:CN112328424B
公开(公告)日:2022-05-06
申请号:CN202011396662.7
申请日:2020-12-03
Applicant: 之江实验室
Abstract: 本发明公开了一种用于数值型数据的智能异常检测方法及装置,该方法包括:上传数据阶段,实现数据上传;数据池阶段,实现数据存储与数据比对;算法池阶段,实现系统智能推荐多种适合当前数据的异常检测算法;算法结果集成阶段,实现汇总各算法的计算结果并得出最终计算结果;异常点判定阶段,实现自主选择异常点判定方法并做出判定;检测结果可视化阶段,实现可视化直观展示数据尤其是异常点。本发明创新地提出了智能辅助算法推荐、算法结果集成和异常点智能判定并将其运用到系统中,极大地简化了用户操作,帮助用户在较少的时间内得到更加准确且易于观察的异常检测结果。
-
公开(公告)号:CN115758226B
公开(公告)日:2023-06-02
申请号:CN202310019270.6
申请日:2023-01-06
Applicant: 之江实验室
IPC: G06F18/24 , G06F18/25 , G06N3/045 , G06N3/08 , G06N3/0442
Abstract: 本说明书公开了一种异常检测的方法、装置、存储介质及电子设备。该异常检测的方法包括:获取目标设备的状态数据,以及所处环境的环境数据,将状态数据以及环境数据输入预先训练的检测模型,通过检测模型的特征提取层,确定状态特征以及环境特征,将状态特征输入检测模型中设有至少两个子网络的特征转换层,以确定各子网络输出的转换后特征,以及,根据状态特征和环境特征,确定各子网络在不同检测任务下对应的权重,进而确定目标设备在不同检测任务下对应的目标特征,并对目标设备进行异常检测。
-
-
-
-
-
-
-
-
-