-
公开(公告)号:CN115905546B
公开(公告)日:2023-07-14
申请号:CN202310017218.7
申请日:2023-01-06
Applicant: 之江实验室
IPC: G06F16/35 , G06N3/0464 , G06N3/048 , G06N3/063 , G06N3/08
Abstract: 本发明公开了基于阻变存储器的图卷积网络文献识别装置与方法,对文献识别数据集进行训练集和测试集的构建;构建基于阻变存储器的浮点图卷积网络模型,用训练集进行预训练,得到预训练的模型参数;根据浮点图卷积网络模型,构建基于阻变存储器的训练阶段的图卷积网络量化模型;将训练集输入训练阶段的图卷积网络量化模型,进行量化感知训练,得到每层输出值的截断位宽、损失函数的权值,以及量化感知训练后的模型参数;根据训练阶段的图卷积网络量化模型,构建基于阻变存储器的推理阶段的图卷积网络量化模型;将量化感知训练后的模型参数映射到阻变存储器上,并将测试集输入到基于阻变存储器的推理阶段的图卷积网络量化模型,进行前向推理测试。
-
公开(公告)号:CN115429293B
公开(公告)日:2023-04-07
申请号:CN202211373110.3
申请日:2022-11-04
Applicant: 之江实验室
Abstract: 本发明公开一种基于脉冲神经网络的睡眠类型分类方法和装置,该方法包括:步骤一,获取开源睡眠脑电图数据集;步骤二,将数据集中脑电图信号分割成多个第一片段信号,删除不需要的第一片段信号,并归一化剩余的第一片段信号;步骤三,分割归一化后的第一片段信号,得到第二片段信号;步骤四,将每一个第二片段信号进行事件编码,获得第二片段事件信号,并分为训练集和测试集;步骤五,构建脉冲神经网络模型及其损失函数进行各项参数梯度求解;步骤六,在训练集上进行脉冲神经网络模型优化训练,利用训练好的脉冲神经网络模型对测试集进行识别,实现睡眠类型分类。本发明相比传统神经网络分类检测具有计算量更少、更节能的优点。
-
公开(公告)号:CN114816335B
公开(公告)日:2022-11-25
申请号:CN202210738210.5
申请日:2022-06-28
Applicant: 之江实验室
IPC: G06F7/575
Abstract: 本发明公开了一种忆阻器阵列符号数乘法实现方法、装置及设备,装置包括忆阻器阵列和移位计算模块,忆阻器阵列的输入端和输出端分别与移位计算模块连接,方法包括步骤S1:确定带有符号的输入值,并将其转换为二进制补码形式;步骤S2:依据忆阻器阵列单次输入的位宽,将输入值拆分,其中最高位为符号位,从最低位开始依次输入到忆阻器阵列中进行乘法计算;步骤S3:忆阻器阵列单次输出值为最高位时做移位减法操作,其余位时均做移位加法操作;步骤S4:输出忆阻器阵列的最终乘法计算结果。本发明的忆阻器阵列符号数乘法实现方式,适用于神经网络计算,改善了部分场景下输入值仅为无符号数的限制,通用性强,几乎没有额外的硬件资源消耗。
-
公开(公告)号:CN114004343A
公开(公告)日:2022-02-01
申请号:CN202111663000.6
申请日:2021-12-31
Applicant: 之江实验室
Abstract: 本发明公开了基于忆阻器脉冲耦合神经网络的最短路径获取方法及装置,首先将加权图的边和顶点直接映射到基于忆阻器的脉冲耦合神经网络上的突触和神经元,通过记录神经元的激活时间和给定神经元的连通性,以高度并行的脉冲传播,获得从起始神经元到所有其他神经元的最短路径。本发明提出的基于忆阻器的脉冲耦合神经网络,充分利用了忆阻器物理特性的高度并行性,以较低的时间复杂度和空间复杂度实现了最短路径的获取。并且在八顶点加权图中获得100%的路径最优性,能耗低至0.33μJ。
-
公开(公告)号:CN115827170B
公开(公告)日:2023-07-14
申请号:CN202310123062.0
申请日:2023-02-16
Applicant: 之江实验室
IPC: G06F9/455
Abstract: 本发明公开了基于离散事件的计算机体系结构的并行仿真方法及装置,将待仿真的计算机体系结构,按功能与延迟划分与组合成多个关键节点,并给每个关键节点分配一个线程;所有事件队列中的事件,按照事件发生的时间进行排序,时间相同的事件,按照优先级高低进行排序,整个仿真过程共同维护一条共享时间轴;利用前瞻量与路障事件对所有关键节点进行同步。在避免因果关系错误的条件下利用现代计算机的并行计算能力加速仿真过程。本发明将待仿真体系结构系统按功能与延迟划分与组合成多个关键节点,其中划分模块有利于提高仿真系统的并行度,合并低延迟模块有助于扩大前瞻量,降低同步开销,合理的关键节点选择能进一步加速仿真过程。
-
公开(公告)号:CN114781634A
公开(公告)日:2022-07-22
申请号:CN202210701266.3
申请日:2022-06-21
Applicant: 之江实验室
Abstract: 本发明公开一种基于忆阻器的神经网络阵列的自动映射方法和装置,该方法包括:步骤一,根据神经网络模型,确定所需忆阻器物理阵列参数以及神经网络模型每层的原始计算阵列大小;步骤二,根据忆阻器物理阵列的单次运算能计算的最大卷积数,对原始计算阵列进行分割,获得子计算阵列;步骤三,坐标化忆阻器物理阵列,对子计算阵列按照输入向量数,从多到少排列,映射至忆阻器物理阵列;步骤四,根据步骤二至步骤三的计算阵列的分割记录,对神经网络模型每层的原始计算阵列的输入特征图进行对应的分割,计算出映射后的物理阵列的位置坐标作为所匹配的输入特征图的区域坐标。本发明减少了整体系统所占用的面积,提高了忆阻器阵列的算力和物理利用率。
-
公开(公告)号:CN114677548A
公开(公告)日:2022-06-28
申请号:CN202210579664.2
申请日:2022-05-26
Applicant: 之江实验室
Abstract: 本发明公开了基于阻变存储器的神经网络图像分类系统及方法,系统包括依次连接的输入层、一组卷积层和全连接层,为卷积层配合设置卷积量化层、卷积反量化层、激活层和池化层,方法包括步骤S1:对待分类的图像进行归一化,得到归一化后的图像;步骤S2:对归一化后的图像进行训练集和测试集的构建;步骤S3:构建基于阻变存储器的神经网络模型;步骤S4:将训练集输入到基于阻变存储器的神经网络模型中,进行量化感知训练,得到量化感知训练后的模型参数,包括如下步骤:步骤S5:将测试集图像输入训练好的神经网络,进行进行前向推理测试。
-
公开(公告)号:CN113949385B
公开(公告)日:2022-05-10
申请号:CN202111567676.5
申请日:2021-12-21
Applicant: 之江实验室
IPC: H03M7/04
Abstract: 本发明涉及一种模数转换电路,尤其涉及一种用于RRAM存算一体芯片补码量化的模数转换电路,包括电流电压转换模块、八个采样开关、两个不对称电容阵列、一个比较器以及逻辑控制模块,其中电流电压转换模块将RRAM阵列输出电流转换为电压,通过一个采样开关与一个不对称电容阵列连接,其余七个采样开关与另一个不对称电容阵列连接,两个不对称电容阵列与比较器两个输入端连接,比较器输出端与逻辑控制模块连接,逻辑控制模块输出比较器控制时钟以及电容阵列控制信号,并输出量化结果。通过该种新型补码量化模数转换器,可以解决RRAM存算一体芯片在用于阵列乘加运算中多bit权重的补码量化问题,提高其运算速率与并行度,节省芯片面积。
-
公开(公告)号:CN114332545A
公开(公告)日:2022-04-12
申请号:CN202210261211.5
申请日:2022-03-17
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04
Abstract: 本发明提供一种基于低比特脉冲神经网络的图像数据分类方法和装置,该方法包括:步骤一,获取开源图像数据集,分为训练集和测试集,其中数据集包括计算机图像数据和神经形态数据;步骤二,构建包含隐含层的脉冲神经网络模型,再改进LIF神经元,构建基于改进后的LIF神经元的脉冲神经网络模型;步骤三,通过构建训练损失函数并进行各项梯度求解,对脉冲神经网络模型进行训练;步骤四,在训练集上使用梯度下降参数更新方法进行脉冲神经网络模型优化训练;步骤五,利用构建并训练好的脉冲神经网络模型,对测试集进行识别,得到预测的数据分类标签,实现分类任务。本发明的方法具有更低的功耗,同时与全精度网络模型有近似的准确率。
-
公开(公告)号:CN113949385A
公开(公告)日:2022-01-18
申请号:CN202111567676.5
申请日:2021-12-21
Applicant: 之江实验室
IPC: H03M7/04
Abstract: 本发明涉及一种模数转换电路,尤其涉及一种用于RRAM存算一体芯片补码量化的模数转换电路,包括电流电压转换模块、八个采样开关、两个不对称电容阵列、一个比较器以及逻辑控制模块,其中电流电压转换模块将RRAM阵列输出电流转换为电压,通过一个采样开关与一个不对称电容阵列连接,其余七个采样开关与另一个不对称电容阵列连接,两个不对称电容阵列与比较器两个输入端连接,比较器输出端与逻辑控制模块连接,逻辑控制模块输出比较器控制时钟以及电容阵列控制信号,并输出量化结果。通过该种新型补码量化模数转换器,可以解决RRAM存算一体芯片在用于阵列乘加运算中多bit权重的补码量化问题,提高其运算速率与并行度,节省芯片面积。
-
-
-
-
-
-
-
-
-