-
公开(公告)号:CN116306589B
公开(公告)日:2024-02-09
申请号:CN202310521134.7
申请日:2023-05-10
Applicant: 之江实验室
IPC: G06F40/216 , G06F40/279 , G06F16/35 , G06N3/0455 , G06N3/084 , G10L15/26 , G16H10/60
Abstract: 本说明书公开了一种急救场景的医疗文本纠错及智能提取的方法及装置,可以获取语音识别出的急救医疗文本,而后,根据统计语言模型和/或错字识别模型,确定急救医疗文本中存在的错误位置,进而,确定每个错误位置对应的候选代替字,并根据每个错误位置对应的候选代替字,确定将急救医疗文本进行纠错后的各候选纠错文本,以从各候选纠错文本中选取出目标文本,最后,可以将预设的医疗信息类型与目标文本输入到预先训练的信息提取模型的第一网络层中,以使第一网络层输出提示信息向量,将提示信息向量和目标文本输入到信息提取模型的第二网络层,以通过信息提取模型从目标文本中(56)对比文件Yun Zhao et al.BART based semanticcorrection for Mandarin automatic speechrecognition system《.Computation andLanguage》.2021,全文.
-
公开(公告)号:CN116525125B
公开(公告)日:2023-09-19
申请号:CN202310811543.0
申请日:2023-07-04
Applicant: 之江实验室
IPC: G06F17/00
Abstract: 本说明书公开了一种虚拟电子病历的生成方法及装置,通过预先训练的特征提取模型从输入的指定图中提取指定图包含的各实体的特征,基于各实体的特征以及用户输入的目标文本的特征确定提示向量,将所述提示向量输入到预训练的自然语言模型,生成包含非真实的医疗记录文本的虚拟电子病历。可见,通过预先训练的特征提取模型提取指定图中各实体的特征,充分挖掘指定图中各实体之间的相关关系,并根据各实体的特征以及用户输入的目标文本的特征确定具有针对性的提示向量,通过提示向量引导预训练的自然语言模型充分利用指定图中各实体的特征,生成更符合用户实际需求的高质量虚拟电子病历。
-
公开(公告)号:CN116525125A
公开(公告)日:2023-08-01
申请号:CN202310811543.0
申请日:2023-07-04
Applicant: 之江实验室
Abstract: 本说明书公开了一种虚拟电子病历的生成方法及装置,通过预先训练的特征提取模型从输入的指定图中提取指定图包含的各实体的特征,基于各实体的特征以及用户输入的目标文本的特征确定提示向量,将所述提示向量输入到预训练的自然语言模型,生成包含非真实的医疗记录文本的虚拟电子病历。可见,通过预先训练的特征提取模型提取指定图中各实体的特征,充分挖掘指定图中各实体之间的相关关系,并根据各实体的特征以及用户输入的目标文本的特征确定具有针对性的提示向量,通过提示向量引导预训练的自然语言模型充分利用指定图中各实体的特征,生成更符合用户实际需求的高质量虚拟电子病历。
-
公开(公告)号:CN116306589A
公开(公告)日:2023-06-23
申请号:CN202310521134.7
申请日:2023-05-10
Applicant: 之江实验室
IPC: G06F40/216 , G06F40/279 , G06F16/35 , G06N3/0455 , G06N3/084 , G10L15/26 , G16H10/60
Abstract: 本说明书公开了一种急救场景的医疗文本纠错及智能提取的方法及装置,可以获取语音识别出的急救医疗文本,而后,根据统计语言模型和/或错字识别模型,确定急救医疗文本中存在的错误位置,进而,确定每个错误位置对应的候选代替字,并根据每个错误位置对应的候选代替字,确定将急救医疗文本进行纠错后的各候选纠错文本,以从各候选纠错文本中选取出目标文本,最后,可以将预设的医疗信息类型与目标文本输入到预先训练的信息提取模型的第一网络层中,以使第一网络层输出提示信息向量,将提示信息向量和目标文本输入到信息提取模型的第二网络层,以通过信息提取模型从目标文本中提取出该医疗信息类型下的医疗信息,从而提高了信息提取的准确性。
-
-
-