-
公开(公告)号:CN116823625B
公开(公告)日:2023-12-12
申请号:CN202311099719.0
申请日:2023-08-30
Applicant: 之江实验室
IPC: G06T3/40 , G06T5/00 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于变分自编码器的跨对比度磁共振超分辨率方法和系统。首先,获取同一受试者的不同对比度的高分辨和低分辨率的磁共振成像;然后设计单一对比度的超分辨率网络学习低分辨率到高分辨率图像的映射;接着设计编码和解码模块学习对比度信息,并接入单一对比度的超分辨率网络完成跨对比度重建。本发明可以对不同对比度的低分辨率磁共振图像重建出参考对比度的高分辨率磁共振图像,为临床应用和研究提供大量高质量的数据,便于后续磁共振定性定量分析。
-
公开(公告)号:CN116168258A
公开(公告)日:2023-05-26
申请号:CN202310454392.8
申请日:2023-04-25
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/80 , G06V10/82 , G06V10/774 , G06N3/045 , G06N3/08
Abstract: 本说明书公开了一种目标物分类方法、装置、设备及可读存储介质,通过分别训练各模态的第一分类模型,将各模态的第一分类模型的特征提取子网作为各模态对应的特征提取子网,构建包含各模态的特征提取子网以及第二分类器的第二分类模型,并通过特征提取子网得到各模态的第一目标特征,并将各模态的第一目标特征融合得到的第二目标特征输入第二分类器得到预测分类结果,以预测分类结果以及第一训练样本的标签之间差异的最小化为优化目标,调整第二分类器的参数。可见,通过迁移预训练的特征提取子网的方式,解决了训练样本量少导致的模型分类效果差的问题,根据各模态的第一目标特征进行融合得到预测分类结果,能够提高模型分类性能。
-
公开(公告)号:CN115861716B
公开(公告)日:2023-05-09
申请号:CN202310120729.1
申请日:2023-02-16
Applicant: 之江实验室
Abstract: 本发明公开了一种基于孪生神经网络和影像组学的胶质瘤分类方法及装置,包括如下步骤:收集胶质瘤病人的T1增强脑部磁共振影像数据以及相应的胶质瘤分级标签数据,并对磁共振影像数据进行预处理,将收集到的磁共振影像数据切分为训练集与测试集;对预处理后的磁共振影像数据尺寸进行归一化操作,并构建孪生神经网络训练样本集;等步骤。本发明在在获得海量的深度特征数据和影像组学特征数据后,提出了一种新的特征选择方案,即通过多数表决规则将一组现有的前沿特征选择算法的筛选结果进行综合,从而使特征选择过程更加充分、合理,并且本发明所述方案还可以通过尽量选用基于不同原理的特征选择算法进行优势互补,实现特征选择的进一步优化。
-
公开(公告)号:CN115861716A
公开(公告)日:2023-03-28
申请号:CN202310120729.1
申请日:2023-02-16
Applicant: 之江实验室
Abstract: 本发明公开了一种基于孪生神经网络和影像组学的胶质瘤分类方法及装置,包括如下步骤:收集胶质瘤病人的T1增强脑部磁共振影像数据以及相应的胶质瘤分级标签数据,并对磁共振影像数据进行预处理,将收集到的磁共振影像数据切分为训练集与测试集;对预处理后的磁共振影像数据尺寸进行归一化操作,并构建孪生神经网络训练样本集;等步骤。本发明在在获得海量的深度特征数据和影像组学特征数据后,提出了一种新的特征选择方案,即通过多数表决规则将一组现有的前沿特征选择算法的筛选结果进行综合,从而使特征选择过程更加充分、合理,并且本发明所述方案还可以通过尽量选用基于不同原理的特征选择算法进行优势互补,实现特征选择的进一步优化。
-
公开(公告)号:CN119888384A
公开(公告)日:2025-04-25
申请号:CN202510380938.9
申请日:2025-03-28
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/25 , G06V10/774 , G06V10/44 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种基于混合影像组学模型的卵巢肿瘤交恶性分类系统。一方面,将Med3D网络中的骨干网络作为深度特征提取器构建目标网络,并用多模态3D磁共振影像数据对目标网络进行微调训练得到相应的卵巢肿瘤分类网络,以用于获取深度特征以及肿瘤分类结果。另一方面,提取肿瘤感兴趣区域的组学特征,并得到组学预测模型对应的肿瘤分类结果。此外,将深度特征和组学特征进行融合并通过KNN分类算法得到相应的分类结果。最后,根据以上三个分类结果的加权平均得到最终的卵巢肿瘤交恶性分类结果。本发明通过综合多种模型和算法,实现对卵巢肿瘤患者的多模态MRI影像数据进行更加全面的特征挖掘和分析,从而提高最终的卵巢肿瘤分类效果。
-
公开(公告)号:CN116823625A
公开(公告)日:2023-09-29
申请号:CN202311099719.0
申请日:2023-08-30
Applicant: 之江实验室
IPC: G06T3/40 , G06T5/00 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于变分自编码器的跨对比度磁共振超分辨率方法和系统。首先,获取同一受试者的不同对比度的高分辨和低分辨率的磁共振成像;然后设计单一对比度的超分辨率网络学习低分辨率到高分辨率图像的映射;接着设计编码和解码模块学习对比度信息,并接入单一对比度的超分辨率网络完成跨对比度重建。本发明可以对不同对比度的低分辨率磁共振图像重建出参考对比度的高分辨率磁共振图像,为临床应用和研究提供大量高质量的数据,便于后续磁共振定性定量分析。
-
公开(公告)号:CN116805284A
公开(公告)日:2023-09-26
申请号:CN202311085914.8
申请日:2023-08-28
Applicant: 之江实验室
IPC: G06T3/40 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/084 , G06N3/0985
Abstract: 本发明公开了一种基于特征迁移的三维磁共振平面间超分辨重建方法和系统。首先,获取高分辨率的磁共振数据和对应的低分辨率数据;其次,将三维高分辨率数据转成二维标签数据,将三维低分辨率数据进行插值后转成二维初始数据,将三维低分辨率数据通过最近邻寻找的方法生成二维参考数据;然后设计基于特征迁移和平面间超分辨的深度学习网络完成二维低分辨率图像到高分辨率图像的映射;最后将二维高分辨率图像组合成三维高分辨率图像。本发明利用数据本身的先验信息大幅提升重建质量,同时重建不同的其他低分辨率磁共振图像时,具有更好的泛化性能和重建质量,因而可以为临床应用和研究提供大量高质量的数据,便于后续磁共振定性定量分析。
-
公开(公告)号:CN116168258B
公开(公告)日:2023-07-11
申请号:CN202310454392.8
申请日:2023-04-25
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/80 , G06V10/82 , G06V10/774 , G06N3/045 , G06N3/08
Abstract: 本说明书公开了一种目标物分类方法、装置、设备及可读存储介质,通过分别训练各模态的第一分类模型,将各模态的第一分类模型的特征提取子网作为各模态对应的特征提取子网,构建包含各模态的特征提取子网以及第二分类器的第二分类模型,并通过特征提取子网得到各模态的第一目标特征,并将各模态的第一目标特征融合得到的第二目标特征输入第二分类器得到预测分类结果,以预测分类结果以及第一训练样本的标签之间差异的最小化为优化目标,调整第二分类器的参数。可见,通过迁移预训练的特征提取子网的方式,解决了训练样本量少导致的模型分类效果差的问题,根据各模态的第一目标特征进行融合得到预测分类结果,能够提高模型分类性能。
-
公开(公告)号:CN116805284B
公开(公告)日:2023-12-19
申请号:CN202311085914.8
申请日:2023-08-28
Applicant: 之江实验室
IPC: G06T3/40 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/084 , G06N3/0985
Abstract: 建不同的其他低分辨率磁共振图像时,具有更好本发明公开了一种基于特征迁移的三维磁 的泛化性能和重建质量,因而可以为临床应用和共振平面间超分辨重建方法和系统。首先,获取 研究提供大量高质量的数据,便于后续磁共振定高分辨率的磁共振数据和对应的低分辨率数据; 性定量分析。其次,将三维高分辨率数据转成二维标签数据,将三维低分辨率数据进行插值后转成二维初始数据,将三维低分辨率数据通过最近邻寻找的方法生成二维参考数据;然后设计基于特征迁移和平面间超分辨的深度学习网络完成二维低分辨(56)对比文件Liu, X等.Super Resolution of UnpairedMR Images Based on DomainMigration.Advances in IntelligentInformation Hiding and Multimedia SignalProcessing: Proceeding of the 18th IIH-MSP 2022 . Smart Innovation, Systems andTechnologies (339).2023,全文.邢晓羊;魏敏;符颖.基于特征损失的医学图像超分辨率重建.计算机工程与应用.2018,(第20期),全文.杨文瀚;刘家瑛;夏思烽;郭宗明.数据外补偿的深度网络超分辨率重建.软件学报.2017,(第04期),全文.
-
-
-
-
-
-
-
-