-
公开(公告)号:CN119026527A
公开(公告)日:2024-11-26
申请号:CN202411517736.6
申请日:2024-10-29
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/27 , G06F17/13 , G06N3/0499 , G06N3/048 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种基于内嵌物理知识神经网络的非定常气动力建模方法,涉及建模技术领域;其将大迎角非定常气动力物理知识嵌入深度神经网络进行大迎角非定常气动力建模,克服了计算复杂和参数辨识困难,并能够用稀疏的非定常气动力数据训练得到具备可解释性、预测精度较高的大迎角非定常气动力模型。本发明不需要对物理机理进行深入的研究,而是可以直接选择相应背景下的具有代表性的物理方程进行结构和物理意义的研究,降低了对技术人员专业知识的要求,大大缩短了建模时间。
-
公开(公告)号:CN119026527B
公开(公告)日:2025-01-28
申请号:CN202411517736.6
申请日:2024-10-29
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/27 , G06F17/13 , G06N3/0499 , G06N3/048 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种基于内嵌物理知识神经网络的非定常气动力建模方法,涉及建模技术领域;其将大迎角非定常气动力物理知识嵌入深度神经网络进行大迎角非定常气动力建模,克服了计算复杂和参数辨识困难,并能够用稀疏的非定常气动力数据训练得到具备可解释性、预测精度较高的大迎角非定常气动力模型。本发明不需要对物理机理进行深入的研究,而是可以直接选择相应背景下的具有代表性的物理方程进行结构和物理意义的研究,降低了对技术人员专业知识的要求,大大缩短了建模时间。
-