基于无同步SpTRSV算法的访存与并行效率优化方法

    公开(公告)号:CN118519787A

    公开(公告)日:2024-08-20

    申请号:CN202410985246.2

    申请日:2024-07-23

    Abstract: 本发明公开了一种基于无同步SpTRSV算法的访存与并行效率优化方法,属于高性能并行计算领域,包括:步骤一,根据稀疏矩阵非零元素将行划分为长行和短行;步骤二,将目标向量x的值均设置为最大值;步骤三,将写阶段所需的数据预取到寄存器中;步骤四,在读阶段,判断依赖情况并进行累加操作;步骤五,在写阶段,从寄存器读取数据,计算对应行x的值。本发明解决了目前无同步SpTRSV算法中线程级并行写阶段的线程分歧问题,以及线程级和线程束级粗粒度的选择策略,从而导致GPU利用率不高的问题。

    一种基于投影的高超声速飞行器气动热预测方法

    公开(公告)号:CN114996658A

    公开(公告)日:2022-09-02

    申请号:CN202210852261.0

    申请日:2022-07-20

    Abstract: 本发明提供了一种基于投影的高超声速飞行器气动热预测方法,包括:步骤1、将三维飞行器在多个不同平面进行投影获得多视图深度投影图像;步骤2、构建并训练热流图像智能预测模型及最大最小热流预测模型;步骤3、在不同来流条件下,输入多视图深度投影图像至热流图像智能预测模型及最大最小热流预测模型,得到热流图像和热流最大最小值;步骤4、获取多视图深度投影图像对应的真实热流图像;步骤5、将多视图深度投影图像重构为三维点云,结合热流图像得到三维热流点云,再进行插值得到三维飞行器的壁面热流分布。本发明能够高效精确地进行飞行器表面气动热环境预测,通过投影后得到的图像进行直接预测,一次获得所有点的热流值,更加高效。

    一种基于涡量和雷诺数映射关系的三维流场智能分类方法

    公开(公告)号:CN118171207A

    公开(公告)日:2024-06-11

    申请号:CN202410591155.0

    申请日:2024-05-13

    Abstract: 本发明公开了一种基于涡量和雷诺数映射关系的三维流场智能分类方法,其包括将三维流场中的流场属性集中的每个离散采样点定义为具有位置、时间和速度三个物理量,将三维涡量定义为速度的旋度;将三维涡量表征为二维涡量;推导出二维涡量与雷诺数的对应关系,得到三维流场分类标准;通过连续采样时间的二维涡量,计算得到二维涡量时间序列,并将其作为二维涡量智能分类模型的输入;将二维涡量时间序列作为二维涡量智能分类模型的训练样本并对其进行训练,得到训练好的二维涡量智能分类模型;将新的二维涡量时间序列输入训练好的二维涡量智能分类模型中,得到三维流场所属分类。本发明提高了三维流场的分类效率。

    一种基于切片的超声速无粘流动智能初场设置方法

    公开(公告)号:CN117034815B

    公开(公告)日:2024-01-23

    申请号:CN202311287466.X

    申请日:2023-10-08

    Abstract: 本发明公开了一种基于切片的超声速无粘流动智能初场设置方法,该方法包括将超声速飞行器在不同状态下的流场沿来流方向切片;对每一张切片生成坐标矩阵、形状矩阵、数据流场矩阵和来流矩阵;拼接所述坐标矩阵、所述形状矩阵、所述数据流场矩阵和所述来流矩阵得到输入矩阵和标签矩阵;以所述标签矩阵作为真实值,采用融合距离权重的均方误差作为代价函数训练超声速无粘流动的初场智能预测模型;将输入矩阵输入训练后的模型获取预测初场。本发明属于流体力学和人工智能技术领域,利用深度学习提取流场的特征和规律,可以预测出更加准确的流场初始条件,提高计算结果的准确性和可靠(56)对比文件陈逖 等.二维进气道不启动流场非定常特性的混合LES/RANS模拟.航空动力学报.2012,第27卷(第08期),第1792-1800页.

Patent Agency Ranking