-
公开(公告)号:CN119738137A
公开(公告)日:2025-04-01
申请号:CN202411683122.5
申请日:2024-11-22
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种流式细胞分选仪喷嘴堵塞监控及清洗方法,属于细胞分选领域,本发明流式细胞分选仪喷嘴堵塞监控及清洗方法通过在鞘液输出管路中连接一个流阻原件来增大整个流路的流阻,并通过流式腔的压力检测来分析喷嘴的堵塞状态,为便于评估液路中各部件的流阻,在鞘液流路和液滴生成器流路之间接入一个流量计,通过流路‑电路等效原理,对从鞘液管入口到喷嘴出口之间的流路进行电路等效,计算液路中各部件的流阻,计算第t时刻喷嘴流阻的增大倍率,根据误差限以及喷嘴流阻的增大倍率判断喷嘴堵塞情况以及能否自动清洗。
-
公开(公告)号:CN118408880A
公开(公告)日:2024-07-30
申请号:CN202410506387.1
申请日:2024-04-25
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N15/1434 , G01N15/1429
Abstract: 本发明公开了一种流式细胞分析方法以及装置,属于细胞分析领域,通过在流道上沿样本流动方向依次设置散射光检测点以及荧光检测点,散射光检测点以及荧光检测点间隔设置;根据流道尺寸以及流道中样本的流速计算样本从散射光检测点到荧光检测点的延时时间;当在散射光检测点检测到散射光信号时,根据延时时间延时后,在荧光检测点检测荧光信号;使散射光检测点与荧光检测点不在同一位置,并通过点对点成像的方式,使其视场分开,互不干扰,巧妙的去除了激发光引起的散射光及拉曼散射对荧光检测的干扰,从而提高了荧光检测的灵敏度。
-
公开(公告)号:CN118408879A
公开(公告)日:2024-07-30
申请号:CN202410506386.7
申请日:2024-04-25
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N15/1434 , G01N15/1429
Abstract: 本发明提供用于流式分析系统数据采集验证的模拟信号发生方法,涉及流式细胞分析技术领域,该方法包括以下步骤:通过查找表构建模拟单个细胞在通过检测区时产生的事件信号;通过定时器和随机数实现事件的随机出现;建立运算电路调制模拟信号。本发明提供了一种新的用于流式分析系统数据采集模块验证的测试信号构建方法,能够更为有效地模拟细胞事件到达时所产生的信号,且实现方法简单方便,有助于流式分析系统的开发与验证。
-
公开(公告)号:CN118067594A
公开(公告)日:2024-05-24
申请号:CN202410138803.7
申请日:2024-01-31
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N15/1429 , G01N15/1434 , G06F18/25 , G06V20/69 , G06V10/80
Abstract: 本发明提供流式细胞分析数据与CCD图像数据融合方法、系统及介质,该系统包括流体单元、光学单元、流式分析单元、CCD成像单元、数据处理单元;流体单元用于实现样本在流动池的中心位置,在层流状态下逐个通过光学单元;光学单元包括流式分析照明光源、CCD成像照明光源、物镜、多模光纤;流式分析单元包括前向散射光探测器、侧向散射光及荧光分析模块。本发明能够实现复杂样本环境下的流式细胞分析数据和CCD图像数据的精准融合,能够精准定位成像区域,图像成像区域能够缩小为原来的二十分之一,并且CCD相机输出的图像数量随着检测目标的通量下降而下降,不需要一直满负荷工作,能够有效降低系统对硬件的要求,提高系统的稳定性。
-
公开(公告)号:CN110535017B
公开(公告)日:2021-07-13
申请号:CN201910863010.0
申请日:2019-09-12
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种基于双掺杂晶体的全固态黄光激光器,包括:泵浦系统和谐振腔,泵浦系统包括两个半导体激光器、两个光束整形模块、偏振合束模块和聚焦透镜模块;所述双掺杂激光增益介质包括Dy3+掺杂的氧化物基质以及辅助掺杂离子。本发明利用Dy3+中4F9/2→6H13/2的受激辐射直接产生黄光激光,无需非线性频率变换过程,从根本上解决了目前全固态黄光激光结构复杂的问题;本发明的激光介质采用双掺杂的氧化物晶体,通过多声子弛豫的方式加速6H13/2能级的粒子数消耗;共掺杂离子(Tb3+/Eu3+)的引入实现激光下能级的能量转移,减小6H13/2的能级寿命,实现了粒子数的快速反转,提高了黄光激光输出的稳定性。
-
公开(公告)号:CN118562729A
公开(公告)日:2024-08-30
申请号:CN202410530580.9
申请日:2024-04-29
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种细胞分选富集方法及装置,属于流式细胞分析领域,通过在流道旁设置第一压电陶瓷,使样本中的细胞形成单线排列的队列;细胞在检测点的激发光的作用下发出前向散射光、侧向散射光及荧光,前向散射光进入第一探测器,侧向散射光及荧光进入第二探测器;第一探测器以及第二探测器判断目标细胞;通过在流道旁设置第二压电陶瓷,第二压电陶瓷根据目标细胞触发信号将目标细胞从流道推向分选通道;细胞钳位结构在分选通道的钳位区产生钳位声场,在钳位声场作用下,目标细胞会被钳位在区域中心,而液流则保持通过,使目标细胞富集,通过上述方法,细胞富集的准确度高、效率高。
-
公开(公告)号:CN118142892A
公开(公告)日:2024-06-07
申请号:CN202410572397.5
申请日:2024-05-10
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: B07C5/34 , B07C5/36 , B07C5/38 , G01N15/1404 , G01N15/1434 , G01N15/14
Abstract: 本发明公开了一种基于声表面行波进行颗粒分选的方法以及装置,属于微流控领域,通过对微流体中的混合颗粒进行抗体标识,使混合颗粒中的目标颗粒被标识;混合颗粒在主流道内Y向聚焦,使得颗粒在主流道主平面内聚焦为单列流动;混合颗粒在主流道内Z向聚焦到主流道底部贴着压电基片流动;激光照射到运动中的混合颗粒,根据光信号识别目标颗粒;根据识别结果控制压电基片产生振动,产生声表面行波,部分瑞利波能量转换成漏瑞利波传入主流道中的目标颗粒,压力波在Z方向上的分量远强于在Y方向上的分量,使目标颗粒向上倾斜移动,流出收集口,完成目标颗粒的分选,能够对具有相近直径大小和密度的颗粒的分选,并且适用不同微流体颗粒、分选速率高。
-
公开(公告)号:CN118067595A
公开(公告)日:2024-05-24
申请号:CN202410189387.3
申请日:2024-02-20
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01N15/1429 , G06T9/00 , G01N15/1433
Abstract: 本发明提供流式检测成像数据对齐方法、流式分析系统及存储介质,该方法包括步骤:通过信号发生单元产生两组帧同步信号以使流式检测单元与流式成像单元的帧同步;流式成像单元对识别到的细胞进行编号并上传上位机,流式检测单元按检测到的细胞先后顺序进行编号并上传上位机,上位机根据接收到的编号将流式检测单元与流式成像单元的检测结果对齐合并。实现在高通量的检测过程中,将各处的检测结果准确整合以获取颗粒的所有理化特性。该方法简单,易实现,只需要在原有数据处理系统上简单改动数据结构即可实现数据对齐的目标。在出现对齐异常的情况时,只需要丢弃异常情况对应帧编号下的数据,对整体数据没有更多的影响,系统具有较好的鲁棒性。
-
公开(公告)号:CN110646397A
公开(公告)日:2020-01-03
申请号:CN201910816164.4
申请日:2019-08-30
Applicant: 中国科学院苏州生物医学工程技术研究所 , 苏州国科医工科技发展(集团)有限公司
IPC: G01N21/65
Abstract: 本发明公开了一种提高壳层隔绝纳米粒子拉曼光谱强度的方法、装置和系统,该方法为:先将待测样本放置在金属基底或镀有金属膜的基底上,再将壳层隔绝纳米粒子铺设在所述待测样本上,然后在所述壳层隔绝纳米粒子上设置与所述基底固定的压板,以使所述壳层隔绝纳米粒子被挤压而单层平铺在所述待测样本上,最后进行拉曼光谱检测。本发明通过镀膜压板的设计,使壳层隔绝纳米粒子水平分布更加均匀,并紧贴被测样本,解决了拉曼光谱检测时壳层隔绝纳米粒子聚集的问题,提高了与待测样本发生有效电磁相互作用的壳层隔绝纳米粒子的数量,提高了拉曼信号的强度。该方案具有结构紧凑、效率高、易于施行等特点。
-
公开(公告)号:CN110581433A
公开(公告)日:2019-12-17
申请号:CN201910862807.9
申请日:2019-09-12
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: H01S3/0941 , H01S3/16
Abstract: 本发明公开了一种基于掺铽氟化物晶体的黄光激光器,包括:泵浦系统和谐振腔,泵浦系统包括泵浦光源、光束整形模块、功率调节模块和聚焦透镜模块;谐振腔包括输入镜、激光增益介质、输出耦合镜和滤光片;激光增益介质为掺铽氟化物晶体Tb3+:LaF3。本发明利用Tb3+中5D4→7F4的受激辐射直接产生黄光激光,无需非线性频率变换过程,从根本上解决了目前黄光激光结构复杂的问题;本发明的激光介质为Tb3+:LaF3,以具有低声子能量的氟化物作为掺杂基质,能减小晶体内部的激发态吸收(ESA)过程;本发不存在交叉弛豫通道;同时,通过提高Tb3+掺杂浓度能弥补Tb3+的低受激发射截面,提高了黄光激光输出的稳定性。
-
-
-
-
-
-
-
-
-