-
公开(公告)号:CN111340011B
公开(公告)日:2020-09-11
申请号:CN202010419814.4
申请日:2020-05-18
Applicant: 中国科学院自动化研究所南京人工智能芯片创新研究院 , 中国科学院自动化研究所
Abstract: 本发明提出了一种自适应时序移位神经网络时序行为识别方法,首先采集多个时间点的特征并建模;接着引入自适应时序移位神经网络学习每一层网络所需的感受野;最后训练可学习的移位变量,对骨骼点数据进行修正。本发明能够自适应的学习每一层网络所需的感受野,并且能够自适应的学习每种数据集所需的感受野。自适应时序移位神经网络能够针对不同的数据学习出不同的时间移位向量,从而自适应的适应不同的数据分布。通过本发明提出的时序行为识别方法,能够在提高行为检测精度的同时节省计算资源,这种自适应的学习比普通时间卷积的手工调参更加优越。
-
公开(公告)号:CN111340011A
公开(公告)日:2020-06-26
申请号:CN202010419814.4
申请日:2020-05-18
Applicant: 中国科学院自动化研究所南京人工智能芯片创新研究院 , 中国科学院自动化研究所
Abstract: 本发明提出了一种自适应时序移位神经网络时序行为识别方法及系统,首先采集多个时间点的特征并建模;接着引入自适应时序移位神经网络学习每一层网络所需的感受野;最后训练可学习的移位变量,对骨骼点数据进行修正。本发明能够自适应的学习每一层网络所需的感受野,并且能够自适应的学习每种数据集所需的感受野。自适应时序移位神经网络能够针对不同的数据学习出不同的时间移位向量,从而自适应的适应不同的数据分布。通过本发明提出的时序行为识别方法,能够在提高行为检测精度的同时节省计算资源,这种自适应的学习比普通时间卷积的手工调参更加优越。
-
公开(公告)号:CN111582220B
公开(公告)日:2023-05-26
申请号:CN202010419839.4
申请日:2020-05-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明公开了一种基于移位图卷积神经网络骨骼点行为识别系统包括:图像获取模块、图像处理模块、提取模块和行为识别模块,其中图像获取模块用于获取行为图像;图像处理模块用于处理图像获取模块获取的行为图像进行图像处理;提取模块用于提取图像处理模块处理后图像的骨骼点;行为识别模块用于识别提取模块提取骨骼点行为特征的。本发明设计行为识别模块进行对骨骼点行为识别,减小图卷积计算量的新型图卷积,与传统图卷积不同,移位图卷积不是通过扩大卷积核来扩展感受范围,而是通过新型移位操作来使得图特征进行移位拼接,在显著减少计算量提高计算速度的情况下达到同样甚至更高的识别精度,避免传统图卷积的计算量会随着卷积核增大而增大。
-
公开(公告)号:CN111104553B
公开(公告)日:2023-12-12
申请号:CN202010012178.3
申请日:2020-01-07
Applicant: 中国科学院自动化研究所
IPC: G06F16/75 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种高效运动互补神经网络系统,包括视频读取单元、视频类别单元和神经网络补充单元;所述视频读取单元对输入的视频进行读取,同时对视频的描述信息等文字辅助信息进行提取;所述视频类别单元根据网络等视频提取源对视频的描述信息对视频的类别进行初步判定,并将视频划分到神经网络中已有的类别分区中;所述神经网络补充单元分成两个模块,对视频分类的方法进行优化,缩短视频分类的时间。本发明针对双流法和3D卷积法分别做出提高计算光流效率和缩小网络计算量的优化方法,提升了视频提取和分类的速度。
-
公开(公告)号:CN111104553A
公开(公告)日:2020-05-05
申请号:CN202010012178.3
申请日:2020-01-07
Applicant: 中国科学院自动化研究所
Abstract: 本发明公开了一种高效运动互补神经网络系统,包括视频读取单元、视频类别单元和神经网络补充单元;所述视频读取单元对输入的视频进行读取,同时对视频的描述信息等文字辅助信息进行提取;所述视频类别单元根据网络等视频提取源对视频的描述信息对视频的类别进行初步判定,并将视频划分到神经网络中已有的类别分区中;所述神经网络补充单元分成两个模块,对视频分类的方法进行优化,缩短视频分类的时间。本发明针对双流法和3D卷积法分别做出提高计算光流效率和缩小网络计算量的优化方法,提升了视频提取和分类的速度。
-
公开(公告)号:CN111582220A
公开(公告)日:2020-08-25
申请号:CN202010419839.4
申请日:2020-05-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明公开了一种基于移位图卷积神经网络骨骼点行为识别系统包括:图像获取模块、图像处理模块、提取模块和行为识别模块,其中图像获取模块用于获取行为图像;图像处理模块用于处理图像获取模块获取的行为图像进行图像处理;提取模块用于提取图像处理模块处理后图像的骨骼点;行为识别模块用于识别提取模块提取骨骼点行为特征的。本发明设计行为识别模块进行对骨骼点行为识别,减小图卷积计算量的新型图卷积,与传统图卷积不同,移位图卷积不是通过扩大卷积核来扩展感受范围,而是通过新型移位操作来使得图特征进行移位拼接,在显著减少计算量提高计算速度的情况下达到同样甚至更高的识别精度,避免传统图卷积的计算量会随着卷积核增大而增大。
-
-
-
-
-