-
公开(公告)号:CN110991418A
公开(公告)日:2020-04-10
申请号:CN201911335801.2
申请日:2019-12-23
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及一种合成孔径雷达目标图像识别方法及系统,所述识别方法包括:从MSTAR数据集中,获取训练样本集和测试样本集;通过所述训练样本集对原始双流卷积神经网络进行训练,得到训练好的双流卷积神经网络;基于训练好的双流卷积神经网络,对各所述测试样本图像进行识别,得到对应各测试样本图像的网络预测标签。本发明通过训练样本集对原始双流卷积神经网络进行训练,可降低参数数量,提高识别效率;基于训练好的双流卷积神经网络,对待识别目标图像进行识别,从而可准确得到待识别目标图像的类别,可提高识别的正确率。
-
公开(公告)号:CN110991418B
公开(公告)日:2023-04-28
申请号:CN201911335801.2
申请日:2019-12-23
Applicant: 中国科学院自动化研究所
IPC: G06V20/13 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/045
Abstract: 本发明涉及一种合成孔径雷达目标图像识别方法及系统,所述识别方法包括:从MSTAR数据集中,获取训练样本集和测试样本集;通过所述训练样本集对原始双流卷积神经网络进行训练,得到训练好的双流卷积神经网络;基于训练好的双流卷积神经网络,对各所述测试样本图像进行识别,得到对应各测试样本图像的网络预测标签。本发明通过训练样本集对原始双流卷积神经网络进行训练,可降低参数数量,提高识别效率;基于训练好的双流卷积神经网络,对待识别目标图像进行识别,从而可准确得到待识别目标图像的类别,可提高识别的正确率。
-