基于深度学习的姿态估计方法以及系统

    公开(公告)号:CN119006598B

    公开(公告)日:2025-04-29

    申请号:CN202411457850.4

    申请日:2024-10-18

    Abstract: 本发明提供一种基于深度学习的姿态估计方法以及系统,应用于图像识别领域,其中,方法包括:获取目标图像、自然语言指令以及模板图像;通过预设的提示生成器,分别对自然语言指令与模板图像进行编码,得到文本特征与视觉特征;通过提示生成器的大语言模型,对文本特征与视觉特征进行多模态特征融合,得到多模态特征信息;通过提示生成器的视觉嵌入投影层,基于多模态特征信息,生成姿态提示向量;将目标图像与姿态提示向量输入至预设的姿态估计器,得到姿态估计器输出的关键点热力图;对关键点热力图进行关键点位置解析,得到目标图像的姿态估计结果。通过本发明能够灵活地适应不同的类别的姿态估计需求。

    一种图像分类方法、装置、电子设备及存储介质

    公开(公告)号:CN112801238A

    公开(公告)日:2021-05-14

    申请号:CN202110403926.5

    申请日:2021-04-15

    Abstract: 本发明提供一种图像分类方法、装置、电子设备及存储介质,该方法包括:确定待分类图像中每一像素的特征表示;基于每一像素的特征表示,以及各个预设类别对应的全局特征表示,确定每一像素的特征增强表示;基于每一像素的特征表示和特征增强表示,确定所述待分类图像对应的预设类别;其中,所述全局特征表示是基于样本图像,以及样本图像中每一像素对应的预设类别确定的。本发明提供的方法、装置、电子设备及存储介质,采用像素级的特征增强方式提高了对图像中细节的表达能力,提高了图像的分类准确性。

    基于深度解耦的人体实例解析方法、系统

    公开(公告)号:CN111738174A

    公开(公告)日:2020-10-02

    申请号:CN202010592997.X

    申请日:2020-06-25

    Abstract: 本发明属于计算机视觉领域,具体涉及一种基于深度解耦的人体实例解析方法、系统,旨在为了解决漏检和误检影响实例人体解析识别精度的问题,本发明方法包括:获取输入图像中候选区域的实例检测框和特征;所述候选区域为人体实例的候选区域;所述人体实例包括人体整体实例、人体部件实例;基于所述候选区域的特征,获取候选区域对应实例的实例掩模和实例特征;基于各候选区域对应的实例检测框、实例掩模、实例特征,通过层级式聚类算法进行人体整体-人体部件关联聚类,获取人体实例解析结果。本发明可以提升实例人体解析的识别精度并减少人体实例的漏检和误检。

    基于自我问答的可信多模态大模型推理方法及装置

    公开(公告)号:CN119003741A

    公开(公告)日:2024-11-22

    申请号:CN202411465874.4

    申请日:2024-10-21

    Abstract: 本发明提供一种基于自我问答的可信多模态大模型推理方法及装置,涉及人工智能技术领域,方法包括:获取多模态数据,并进行特征提取得到对应的多模态令牌特征;获取针对多模态数据的提问问题,将提问问题与多模态令牌特征输入到多模态大模型中进行第一问答;并将得到的第一回答文本以及提示词输入到多模态大模型进行第二问答,得到第二回答文本,确定第一回答文本与第二回答文本的相似度得分,当相似度得分大于相似度阈值时,将第一回答文本作为提问问题的回答文本。通过本申请,克服大语言模型在进行问答时过于依赖问答知识库,且生成的回答文本准确性和可信度低的缺陷。

    基于图文预训练模型的零样本异常检测方法、装置

    公开(公告)号:CN118864876A

    公开(公告)日:2024-10-29

    申请号:CN202410860540.0

    申请日:2024-06-28

    Abstract: 本发明提供一种基于图文预训练模型的零样本异常检测方法、装置,包括:对待检测样本图像进行图像特征提取,得到待检测样本图像的局部特征和全局特征;调用大语言模型生成针对待检测样本图像的正常描述文本和异常描述文本;将正常描述文本、异常描述文本分别与手工编写的文本模板、自适应学习的文本模板结合,对结合后的文本进行文本特征提取处理,得到正常文本特征和异常文本特征;基于局部特征、正常文本特征和异常文本特征进行特征交互,得到异常分数图;基于异常分数的最大值、全局特征、正常文本特征和异常文本特征判断待检测样本图像中是否存在异常。本发明可以在无需样本图像中的物品类别先验数据的情况下有效完成零样本异常检测任务。

    一种图像分类方法、装置、电子设备及存储介质

    公开(公告)号:CN112801238B

    公开(公告)日:2021-07-27

    申请号:CN202110403926.5

    申请日:2021-04-15

    Abstract: 本发明提供一种图像分类方法、装置、电子设备及存储介质,该方法包括:确定待分类图像中每一像素的特征表示;基于每一像素的特征表示,以及各个预设类别对应的全局特征表示,确定每一像素的特征增强表示;基于每一像素的特征表示和特征增强表示,确定所述待分类图像对应的预设类别;其中,所述全局特征表示是基于样本图像,以及样本图像中每一像素对应的预设类别确定的。本发明提供的方法、装置、电子设备及存储介质,采用像素级的特征增强方式提高了对图像中细节的表达能力,提高了图像的分类准确性。

Patent Agency Ranking