-
公开(公告)号:CN112183620B
公开(公告)日:2021-04-23
申请号:CN202011032774.4
申请日:2020-09-27
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉领域,具体涉及了一种基于图卷积神经网络的小样本分类模型的发育方法及系统,旨在解决现有模型应用到新任务中性能不佳并且需要大量带标签训练样本的问题。本发明包括:提取一个由无向图构成的知识图谱,获取与任务相关的知识性信息;提取原始模型针对旧任务的训练过程中的经验信息;将知识性信息以及经验性信息相融合,构成新的融合图;通过建立新任务类别和旧任务类别之间的联系并进行模型的训练,得到面向新任务的认知发育后的分类模型。本发明方法在任务的迁移过程中,新任务无需提供大量的带标签样本,就可以实现快速而精准的视觉迁移,极大地提高了模型的利用率,降低了训练模型的成本和时间。
-
公开(公告)号:CN112183620A
公开(公告)日:2021-01-05
申请号:CN202011032774.4
申请日:2020-09-27
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉领域,具体涉及了一种基于图卷积神经网络的小样本分类模型的发育方法及系统,旨在解决现有模型应用到新任务中性能不佳并且需要大量带标签训练样本的问题。本发明包括:提取一个由无向图构成的知识图谱,获取与任务相关的知识性信息;提取原始模型针对旧任务的训练过程中的经验信息;将知识性信息以及经验性信息相融合,构成新的融合图;通过建立新任务类别和旧任务类别之间的联系并进行模型的训练,得到面向新任务的认知发育后的分类模型。本发明方法在任务的迁移过程中,新任务无需提供大量的带标签样本,就可以实现快速而精准的视觉迁移,极大地提高了模型的利用率,降低了训练模型的成本和时间。
-
公开(公告)号:CN117893876B
公开(公告)日:2024-11-08
申请号:CN202410027733.8
申请日:2024-01-08
Applicant: 中国科学院自动化研究所
IPC: G06V10/82 , G06N3/042 , G06N3/0464 , G06N3/08 , G06N5/022 , G06V10/764
Abstract: 本发明提出了一种基于场景图的零样本训练方法、装置、存储介质和电子设备,涉及计算机视觉领域。零样本训练包括:获取与检测样本相关的第一知识图谱;获取第一知识图谱中与检测样本相关的类别信息和连接信息,构建与检测样本相关的第二知识图谱;根据图卷积神经网络对第二知识图谱的信息进行训练,得到第一训练检测模型;根据第一训练检测模型推理得到分类器;根据类别信息和连接信息构建场景图;根据场景图和分类器对第一训练检测模型进行训练,得到第二训练检测模型。本发明通过构建场景图结构,利用前景之间的交互信息,形成新任务和旧任务之间的关联,从而依托模型和旧任务之间的交互信息,实现对新任务的辨识。
-
公开(公告)号:CN117893876A
公开(公告)日:2024-04-16
申请号:CN202410027733.8
申请日:2024-01-08
Applicant: 中国科学院自动化研究所
IPC: G06V10/82 , G06N3/042 , G06N3/0464 , G06N3/08 , G06N5/022 , G06V10/764
Abstract: 本发明提出了一种基于场景图的零样本训练方法、装置、存储介质和电子设备,涉及计算机视觉领域。零样本训练包括:获取与检测样本相关的第一知识图谱;获取第一知识图谱中与检测样本相关的类别信息和连接信息,构建与检测样本相关的第二知识图谱;根据图卷积神经网络对第二知识图谱的信息进行训练,得到第一训练检测模型;根据第一训练检测模型推理得到分类器;根据类别信息和连接信息构建场景图;根据场景图和分类器对第一训练检测模型进行训练,得到第二训练检测模型。本发明通过构建场景图结构,利用前景之间的交互信息,形成新任务和旧任务之间的关联,从而依托模型和旧任务之间的交互信息,实现对新任务的辨识。
-
-
-