-
公开(公告)号:CN112381011B
公开(公告)日:2023-08-22
申请号:CN202011295074.4
申请日:2020-11-18
Applicant: 中国科学院自动化研究所
IPC: G06V40/16 , G06V20/40 , G06V10/774 , G06V10/30 , G06V10/764 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/049 , G06N3/08
Abstract: 本发明属于计算机视觉、深度学习和医学技术领域,具体涉及了一种基于人脸图像的非接触式心率测量方法、系统及装置,旨在解决现有基于图像的非接触式心率测量方法受ROI区域选取以及环境等因素影响较大,心率求取误差率大、实时性低的问题。本发明包括:通过人脸关键点检测和定位,从人脸视频中获取人脸位置,逐帧提取人脸局部ROI区域作为网络模型输入;在卷积与时序网络级联模型的基础上,将心率区间划分为不同的区间类别,将通道注意力网络SENet嵌入卷积模块,按通道重要程度学习权重,最后获取输入视频对应的心率区间类别。本发明结合CNN特征提取以及LSTM长短时记忆神经网络,并嵌入通道注意力网络,实现误差率低、效率高的心率非接触式测量。
-
公开(公告)号:CN112381011A
公开(公告)日:2021-02-19
申请号:CN202011295074.4
申请日:2020-11-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉、深度学习和医学技术领域,具体涉及了一种基于人脸图像的非接触式心率测量方法、系统及装置,旨在解决现有基于图像的非接触式心率测量方法受ROI区域选取以及环境等因素影响较大,心率求取误差率大、实时性低的问题。本发明包括:通过人脸关键点检测和定位,从人脸视频中获取人脸位置,逐帧提取人脸局部ROI区域作为网络模型输入;在卷积与时序网络级联模型的基础上,将心率区间划分为不同的区间类别,将通道注意力网络SENet嵌入卷积模块,按通道重要程度学习权重,最后获取输入视频对应的心率区间类别。本发明结合CNN特征提取以及LSTM长短时记忆神经网络,并嵌入通道注意力网络,实现误差率低、效率高的心率非接触式测量。
-