一种面向文本和图像的跨媒体检索方法及电子装置

    公开(公告)号:CN112000818B

    公开(公告)日:2023-05-12

    申请号:CN202010663328.7

    申请日:2020-07-10

    Abstract: 本发明提供一种面向文本和图像的跨媒体检索方法及电子装置,提取一设定长度语音信息的g维MFCC特征,并将长度为m的g维MFCC特征转换为一维语音特征;对一设定文本进行编码,获取词级别文本表示,并将词级别文本表示中每一个词与一维语音特征进行拼接,得到语音引导文本特征;提取每一图片的区域特征,计算区域特征与语音引导文本特征的相似性分数,判断该图片是否包含设定语音信息及设定文本信息,得到检索结果。本发明利用语音信息的停顿信息,以及语音信息与图像和文本间的关联关系来提升图像‑文本匹配任务的性能,建模了融合语音信息的文本特征表示,引入基于局部注意力机制的细粒度特征融合方式进行跨模态特征融合,提升图文匹配效果。

    一种面向多模式图匹配的并行加速方法

    公开(公告)号:CN109614520B

    公开(公告)日:2021-06-04

    申请号:CN201811228936.4

    申请日:2018-10-22

    Abstract: 本发明公开了一种面向多模式图匹配的并行加速方法。本方法为:1)生成目标领域的模式图集的多模式图索引;2)对所述多模式图索引采用逐层分组策略,即对所述多模式图索引中每一层出现的模式图进行评估,得到该层中每个模式图的匹配代价,然后根据匹配代价对该层的模式图进行分组;3)对不同分组分别分配一线程同时进行匹配计算。本发明通过采用PatternTree索引构建算法挖掘模式图间存在的结构相关性,对于结构相关性较弱的模式图设计并行匹配策略进一步提升匹配性能。

    一种面向多模式图匹配的并行加速方法

    公开(公告)号:CN109614520A

    公开(公告)日:2019-04-12

    申请号:CN201811228936.4

    申请日:2018-10-22

    Abstract: 本发明公开了一种面向多模式图匹配的并行加速方法。本方法为:1)生成目标领域的模式图集的多模式图索引;2)对所述多模式图索引采用逐层分组策略,即对所述多模式图索引中每一层出现的模式图进行评估,得到该层中每个模式图的匹配代价,然后根据匹配代价对该层的模式图进行分组;3)对不同分组分别分配一线程同时进行匹配计算。本发明通过采用PatternTree索引构建算法挖掘模式图间存在的结构相关性,对于结构相关性较弱的模式图设计并行匹配策略进一步提升匹配性能。

    一种基于力导引算法的图数据可视化布局优化方法

    公开(公告)号:CN107818149B

    公开(公告)日:2021-10-08

    申请号:CN201710992552.9

    申请日:2017-10-23

    Abstract: 本发明涉及一种基于力导引算法的图数据可视化布局优化方法。该方法在力导引算法的循环迭代过程中增加以下处理步骤,以优化图数据可视化布局:在结点粘连的情况下,通过随机函数给出结点弹开的位置和结点弹开的方向,从而将粘连结点彼此分开一定的距离,使得结点粘连情况下的吸引力和排斥力能够计算。进一步地,本发明在力导引算法的位移计算中对参数delta值采用梯度设置,使得图数据可视化布局过程减少震荡并快速收敛。本发明能够解决基础力导引布局算法中存在的上述问题,在优化算法布局效果的同时,提升算法的布局效率。

    一种基于力导引算法的图数据可视化布局优化方法

    公开(公告)号:CN107818149A

    公开(公告)日:2018-03-20

    申请号:CN201710992552.9

    申请日:2017-10-23

    CPC classification number: G06F17/30958 G06F17/30994 G06T11/203

    Abstract: 本发明涉及一种基于力导引算法的图数据可视化布局优化方法。该方法在力导引算法的循环迭代过程中增加以下处理步骤,以优化图数据可视化布局:在结点粘连的情况下,通过随机函数给出结点弹开的位置和结点弹开的方向,从而将粘连结点彼此分开一定的距离,使得结点粘连情况下的吸引力和排斥力能够计算。进一步地,本发明在力导引算法的位移计算中对参数delta值采用梯度设置,使得图数据可视化布局过程减少震荡并快速收敛。本发明能够解决基础力导引布局算法中存在的上述问题,在优化算法布局效果的同时,提升算法的布局效率。

    一种面向文本和图像的跨媒体检索方法及电子装置

    公开(公告)号:CN112000818A

    公开(公告)日:2020-11-27

    申请号:CN202010663328.7

    申请日:2020-07-10

    Abstract: 本发明提供一种面向文本和图像的跨媒体检索方法及电子装置,提取一设定长度语音信息的g维MFCC特征,并将长度为m的g维MFCC特征转换为一维语音特征;对一设定文本进行编码,获取词级别文本表示,并将词级别文本表示中每一个词与一维语音特征进行拼接,得到语音引导文本特征;提取每一图片的区域特征,计算区域特征与语音引导文本特征的相似性分数,判断该图片是否包含设定语音信息及设定文本信息,得到检索结果。本发明利用语音信息的停顿信息,以及语音信息与图像和文本间的关联关系来提升图像-文本匹配任务的性能,建模了融合语音信息的文本特征表示,引入基于局部注意力机制的细粒度特征融合方式进行跨模态特征融合,提升图文匹配效果。

Patent Agency Ranking