-
公开(公告)号:CN112487422B
公开(公告)日:2023-04-04
申请号:CN202011173874.9
申请日:2020-10-28
Applicant: 中国科学院信息工程研究所
IPC: G06F21/56 , G06F40/216
Abstract: 本发明实施例提供一种恶意文档检测方法、装置、电子设备及存储介质,该方法包括:对待检测文档进行分析,得到文档特征信息;将所述文档特征信息输入预设恶意文档检测模型,得到检测结果信息;其中,所述预设恶意文档检测模型通过带恶意标签的样本文档特征信息和无标签的样本文档特征信息训练得到的。通过待检测文档的特点,分别提取了文档特征结构信息和文档统计特征信息得到文档特征信息,然后选取了一种半监督学习方法,构建多棵决策树来进行恶意文档检测,多棵决策树集成的思想提高检测准确率而节省了大量的数据标注工作,从而更符合真实应用场景,最终更好的实现恶意文档检测。
-
公开(公告)号:CN112487422A
公开(公告)日:2021-03-12
申请号:CN202011173874.9
申请日:2020-10-28
Applicant: 中国科学院信息工程研究所
IPC: G06F21/56 , G06F40/216
Abstract: 本发明实施例提供一种恶意文档检测方法、装置、电子设备及存储介质,该方法包括:对待检测文档进行分析,得到文档特征信息;将所述文档特征信息输入预设恶意文档检测模型,得到检测结果信息;其中,所述预设恶意文档检测模型通过带恶意标签的样本文档特征信息和无标签的样本文档特征信息训练得到的。通过待检测文档的特点,分别提取了文档特征结构信息和文档统计特征信息得到文档特征信息,然后选取了一种半监督学习方法,构建多棵决策树来进行恶意文档检测,多棵决策树集成的思想提高检测准确率而节省了大量的数据标注工作,从而更符合真实应用场景,最终更好的实现恶意文档检测。
-