-
公开(公告)号:CN107994095B
公开(公告)日:2023-09-12
申请号:CN201711275111.3
申请日:2017-12-06
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/101 , H01L31/105 , H01L31/18
Abstract: 本发明公开了一种高增益紫外至近红外InGaAs探测器芯片,在其磷化铟(InP)衬底之上结构依次为:InP接触层、铟镓砷(InGaAs)吸收层、氧化硅(SiO2)介质层、源极金属电极、石墨烯层、漏极金属电极以及栅极金属电极,如附图所示。本专利的优点在于:一方面石墨烯展现良好的半金属特性,与InGaAs层接触能够形成肖特基光电二极管,实现光探测;另一方面石墨烯无禁带宽度且其光学透过性极好,能够拓宽该新型InGaAs探测器光谱响应至近紫外,同时能够增加InGaAs层的光吸收;此外,石墨烯具有极高的迁移率和极快的载流子传输特性,使得该探测器对光生载流子的注入拥有极高的量子增益特性。
-
公开(公告)号:CN110491950A
公开(公告)日:2019-11-22
申请号:CN201910618714.1
申请日:2019-07-10
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/0216 , H01L31/0236
Abstract: 本发明公开一种控制铟镓砷光敏芯片平面度的平衡层结构,该结构是在光敏芯片基底背面集成一种投射红外波段的光学薄膜,通过控制光学薄膜生长厚度,可实现对光学薄膜内应力的调整,从而达到光敏芯片基底背面与正面的应力平衡,实现高平面度的光敏芯片,薄膜厚度推算方法为:通过测量特定工艺参数下不同长膜厚度对应的光敏芯片平面度PV值变化,获得膜厚度与光敏芯片平面度变化关系经验曲线,依据此关系曲线、长膜前光敏芯片PV值推算所需的长膜厚度。本发明具有精确控制、工艺集成性好等特点,解决大面阵光敏芯片的平面度控制难题,为高连通率的焦平面耦合提供新的解决方案。
-
公开(公告)号:CN104916731A
公开(公告)日:2015-09-16
申请号:CN201510296103.1
申请日:2015-06-02
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/101 , H01L31/18
CPC classification number: Y02P70/521 , H01L31/101 , H01L31/1844
Abstract: 本发明公开了一种低损伤的铟镓砷探测器p+n结制备方法,具体步骤如下:1)淀积氮化硅成结掩膜,2)光敏区成结,3)取样清洗,4)氮气氛围热处理,5)去表面损伤层。其优点在于:氮气氛围热处理一方面能够修复成结过程引入的晶格损伤,减小复合中心的密度,降低探测器的暗电流,另一方面能够激活受主离子,降低施主补偿作用,增加P区的空穴载流子浓度,有利于P电极欧姆接触的稳定性,减小串联电阻;去表面损伤层一方面可以有效去除表面氧化层,减少表面的复合中心,有利于表面钝化,提高探测器的性能,另一方面可以去除表面形成的离子富集层和表层损伤层。
-
公开(公告)号:CN110444607A
公开(公告)日:2019-11-12
申请号:CN201910618698.6
申请日:2019-07-10
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/02 , H01L31/0224 , H01L31/0216 , H01L31/105 , H01L31/18
Abstract: 本发明公开了一种带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法,所述的大规模铟镓砷焦平面探测器在半绝缘InP衬底的背面有应力平衡层。探测器制备的具体步骤如下:1)淀积氮化硅刻蚀掩膜,2)台面刻蚀,3)开N槽,4)生长P电极,5)快速热退火,6)淀积氮化硅钝化膜,7)开P、N电极孔,8)生长加厚电极,9)生长应力平衡层,10)金属化并生长铟柱,11)铟柱剥离并划片。本发明的优点在于:大面阵焦平面探测器平面度好,铟柱形貌更均一,器件耦合连通率高,制备工艺更简单,器件成品率高。
-
公开(公告)号:CN107994095A
公开(公告)日:2018-05-04
申请号:CN201711275111.3
申请日:2017-12-06
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/101 , H01L31/105 , H01L31/18
Abstract: 本发明公开了一种高增益紫外至近红外InGaAs探测器芯片,在其磷化铟(InP)衬底之上结构依次为:InP接触层、铟镓砷(InGaAs)吸收层、氧化硅(SiO2)介质层、源极金属电极、石墨烯层、漏极金属电极以及栅极金属电极,如附图所示。本发明的优点在于:一方面石墨烯展现良好的半金属特性,与InGaAs层接触能够形成肖特基光电二极管,实现光探测;另一方面石墨烯无禁带宽度且其光学透过性极好,能够拓宽该新型InGaAs探测器光谱响应至近紫外,同时能够增加InGaAs层的光吸收;此外,石墨烯具有极高的迁移率和极快的载流子传输特性,使得该探测器对光生载流子的注入拥有极高的量子增益特性。
-
公开(公告)号:CN105371951A
公开(公告)日:2016-03-02
申请号:CN201510864335.2
申请日:2015-12-01
Applicant: 中国科学院上海技术物理研究所 , 上海晶鼎光电科技有限公司
Abstract: 本发明公开了一种短波红外多通道集成光谱组件,它包括:高长宽比InGaAs线列光敏芯片、读出电路、过渡电极板、测温电阻、半导体致冷器、多通道数字式分光器、窗口、金属管壳与盖板。多通道数字式分光器作为微型光谱仪的分光元件,通过边缘金属化焊接直接固定在高长宽比InGaAs线列光敏芯片上,集成在探测器组件内部。本发明优点是:InGaAs线列光敏芯片的光敏元为高长宽比结构,可提高光谱测试的信噪比;多通道数字式分光器可在单个基片上实现光谱的精细调控,并抑制各通道内的光谱噪声、通道间串音、通道外杂散光;在探测器组件实现多个光谱通道探测简化了微型光谱仪的结构,提高仪器的可靠性和稳定性,减轻仪器的重量。
-
公开(公告)号:CN109755349B
公开(公告)日:2021-04-09
申请号:CN201910030209.5
申请日:2019-01-14
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/18 , H01L31/105 , C23C16/513 , C23C16/34
Abstract: 本发明公开了一种低应力钝化的台面型延伸波长铟镓砷探测器制备方法,其结构为:在半绝缘InP衬底上,依次生长N+型InP层,组分渐变的N+型InxAl1‑xAs缓冲层,InxGa1‑xAs吸收层,P+型InxAl1‑xAs帽层,氮化硅SiNx钝化膜,P电极,加厚电极。钝化膜为感应耦合等离子体化学气相沉积技术生长低应力氮化硅钝化膜。本发明的优点在于:采用低应力的氮化硅薄膜钝化,控制大面阵探测器芯片的翘曲度
-
公开(公告)号:CN110444607B
公开(公告)日:2021-01-01
申请号:CN201910618698.6
申请日:2019-07-10
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/02 , H01L31/0224 , H01L31/0216 , H01L31/105 , H01L31/18
Abstract: 本发明公开了一种带有应力平衡层的大规模铟镓砷焦平面探测器及制备方法,所述的大规模铟镓砷焦平面探测器在半绝缘InP衬底的背面有应力平衡层。探测器制备的具体步骤如下:1)淀积氮化硅刻蚀掩膜,2)台面刻蚀,3)开N槽,4)生长P电极,5)快速热退火,6)淀积氮化硅钝化膜,7)开P、N电极孔,8)生长加厚电极,9)生长应力平衡层,10)金属化并生长铟柱,11)铟柱剥离并划片。本发明的优点在于:大面阵焦平面探测器平面度好,铟柱形貌更均一,器件耦合连通率高,制备工艺更简单,器件成品率高。
-
公开(公告)号:CN105371951B
公开(公告)日:2018-10-23
申请号:CN201510864335.2
申请日:2015-12-01
Applicant: 中国科学院上海技术物理研究所 , 上海晶鼎光电科技有限公司
Abstract: 本发明公开了一种短波红外多通道集成光谱组件,它包括:高长宽比InGaAs线列光敏芯片、读出电路、过渡电极板、测温电阻、半导体致冷器、多通道数字式分光器、窗口、金属管壳与盖板。多通道数字式分光器作为微型光谱仪的分光元件,通过边缘金属化焊接直接固定在高长宽比InGaAs线列光敏芯片上,集成在探测器组件内部。本发明优点是:InGaAs线列光敏芯片的光敏元为高长宽比结构,可提高光谱测试的信噪比;多通道数字式分光器可在单个基片上实现光谱的精细调控,并抑制各通道内的光谱噪声、通道间串音、通道外杂散光;在探测器组件实现多个光谱通道探测简化了微型光谱仪的结构,提高仪器的可靠性和稳定性,减轻仪器的重量。
-
公开(公告)号:CN104916731B
公开(公告)日:2017-03-22
申请号:CN201510296103.1
申请日:2015-06-02
Applicant: 中国科学院上海技术物理研究所
IPC: H01L31/101 , H01L31/18
CPC classification number: Y02P70/521
Abstract: 本发明公开了一种低损伤的铟镓砷探测器p+n结制备方法,具体步骤如下:1)淀积氮化硅成结掩膜,2)光敏区成结,3)取样清洗,4)氮气氛围热处理,5)去表面损伤层。其优点在于:氮气氛围热处理一方面能够修复成结过程引入的晶格损伤,减小复合中心的密度,降低探测器的暗电流,另一方面能够激活受主离子,降低施主补偿作用,增加P区的空穴载流子浓度,有利于P电极欧姆接触的稳定性,减小串联电阻;去表面损伤层一方面可以有效去除表面氧化层,减少表面的复合中心,有利于表面钝化,提高探测器的性能,另一方面可以去除表面形成的离子富集层和表层损伤层。
-
-
-
-
-
-
-
-
-