-
公开(公告)号:CN117671437B
公开(公告)日:2024-06-18
申请号:CN202311359531.5
申请日:2023-10-19
Applicant: 中国矿业大学(北京)
IPC: G06V10/80 , G06V10/82 , G06V10/774 , G06V10/764 , G06N3/0464 , G06V20/10
Abstract: 本发明公开了一种基于多任务卷积神经网络的露天采场识别与变化检测方法,其方法包括:S1、采集研究区T1、T2两个时相的遥感影像数据,构建多任务卷积神经网络模型;S2、变化检测网络分支将第一识别网络分支得到的特征图与第二识别网络分支得到的特征图进行差分融合得到编码特征图,然后通过跳跃连接并进行特征融合得到特征图Dt‑5、Dt‑4、Dt‑3、Dt‑2;S3、变化检测网络分支将特征图Dt1‑2与特征图Dt2‑2进行差分融合得到特征图Da‑t2;S4、将特征图Dt‑2分别与通道注意力权重、空间注意力权重相乘运算得到特征图D′t‑2,然后通过上采样操作得到变化检测结果。本发明构建有基于孪生VGG‑16网络结构的多任务卷积神经网络模型,能够快速高效地应用于露天矿区采场识别与变化区域自动检测。
-
公开(公告)号:CN115546649A
公开(公告)日:2022-12-30
申请号:CN202211306355.4
申请日:2022-10-24
Applicant: 中国矿业大学(北京)
Abstract: 本发明公开了一种单视遥感影像高度估计和语义分割多任务预测方法,其方法包括:A、构建多任务网络模型;B、采集高分辨率光学遥感影像样本并得到样本数据集;C、将样本数据集中的光谱空间特征影像块输入多任务网络模型中;D、采集待预测的高分辨率光学遥感影像并裁剪成光谱空间特征影像块输入训练后的多任务网络模型,分别加权计算得到高度估计预测结果DSM和语义分割预测结果SS。本发明多尺度残差及可变形卷积网络能够实现多尺度特征提取,并能克服各类地物的复杂、异质和尺度差异大等问题,DSM与语义分割生成网络分别利用混合特征和优选特征进行DSM估计与语义分割,最终得到高精度的地物DSM估计结果与语义分割结果。
-
公开(公告)号:CN114972989A
公开(公告)日:2022-08-30
申请号:CN202210547696.4
申请日:2022-05-18
Applicant: 中国矿业大学(北京)
IPC: G06V20/10 , G06V10/774 , G06V10/80 , G06V10/40 , G06N3/04
Abstract: 本发明公开了一种基于深度学习算法的单幅遥感影像高度信息估算方法,其方法如下:A、基于TensorFlow搭建高度信息估算网络模型,采集遥感影像数据与nDSM数据进行配准、裁剪得到影像块,训练网络模型;B、将研究区影像裁剪为影像块并输入高度信息估算网络模型通过ResNet、DenseASPP模块、通道注意力机制模块、空间注意力机制跳跃连接模块和可变形卷积模块进行模型处理并输出高度估算结果。本发明高度信息估算网络模型先提取低层和深层特征,通过DenseASPP模块聚合语义特征,接着通过通道注意力机制模块捕获通道维度全局依赖关系,通过空间注意力机制跳跃连接模块构建跳跃连接聚合ResNet低层特征与多尺度高层特征,最后通过可变形卷积模块输出精度高、信息可靠的高度估算结果。
-
公开(公告)号:CN113591759A
公开(公告)日:2021-11-02
申请号:CN202110906260.5
申请日:2021-08-09
Applicant: 中国矿业大学(北京) , 国家能源投资集团有限责任公司 , 北京低碳清洁能源研究院 , 神华北电胜利能源有限公司
Abstract: 本发明公开了一种矿区长时序地表土壤含水量遥感数据生产方法及系统,首先采集目标矿区原始历史数据并经过筛选、裁剪、剔除处理得到地表土壤含水量数据,同时采集数据并分别计算归一化植被指数NDVI、植被覆盖度FVC、叶片等效水厚度EWT,接着根据目标分辨率确定降尺度扩展倍数策略,最后先进行模型训练再按照降尺度扩展倍数策略进行降尺度扩展最终得到与目标空间分辨率相近的地表土壤含水量数据产品。本发明能够得到具有一致性适应于矿区场景的长时序、高空间分辨率、高时间分辨率的地表土壤含水量数据产品,可以实现矿区地表土壤含水量的长时序监测,为挖掘矿区生态环境演变机理、量化矿区活动影响范围等提供数据支持。
-
公开(公告)号:CN113435411A
公开(公告)日:2021-09-24
申请号:CN202110843211.1
申请日:2021-07-26
Applicant: 中国矿业大学(北京) , 中国自然资源航空物探遥感中心
Abstract: 本发明公开了一种基于改进DeepLabV3+的露天矿区土地利用识别方法,首先制作矿区不同土地利用类型样本数据集,构建DeepLabV3+网络模型,采用Xception作为基础网络架构提取低层和高层特征,其次通过改进的空间金字塔池化提取多尺度特征信息,然后将多尺度特征输入到注意力机制模块中,增强网络模型的分类能力;最后,聚合Xception低层特征与多尺度高层特征,通过卷积和上采样得到模型预测结果。本发明通过低层特征多尺度空间信息融合减少网络逐层卷积池化导致的边缘信息损失,提高了分割精度,通过引入空间注意力机制模块聚合多尺度上下文信息,增强网络模型的分类能力,通过占比加权的方法解决网络训练中样本不平衡的问题,提高了各类别用地的分类识别精度。
-
公开(公告)号:CN115546649B
公开(公告)日:2023-04-18
申请号:CN202211306355.4
申请日:2022-10-24
Applicant: 中国矿业大学(北京)
IPC: G06V20/10 , G06V10/82 , G06V10/26 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种单视遥感影像高度估计和语义分割多任务预测方法,其方法包括:A、构建多任务网络模型;B、采集高分辨率光学遥感影像样本并得到样本数据集;C、将样本数据集中的光谱空间特征影像块输入多任务网络模型中;D、采集待预测的高分辨率光学遥感影像并裁剪成光谱空间特征影像块输入训练后的多任务网络模型,分别加权计算得到高度估计预测结果DSM和语义分割预测结果SS。本发明多尺度残差及可变形卷积网络能够实现多尺度特征提取,并能克服各类地物的复杂、异质和尺度差异大等问题,DSM数据与语义分割生成网络分别利用混合特征和优选特征进行DSM数据估计与语义分割,最终得到高精度的地物DSM估计结果与语义分割结果。
-
公开(公告)号:CN114549972A
公开(公告)日:2022-05-27
申请号:CN202210050976.4
申请日:2022-01-17
Applicant: 中国矿业大学(北京) , 中国自然资源航空物探遥感中心 , 北京数论科技有限公司
Abstract: 本发明提供一种露天矿采场提取方法、装置、设备、介质及程序产品,包括:获取露天采场的待检测遥感影像,并对待检测遥感影像进行降采样;将降采样后的待检测遥感影像输入至Faster R‑CNN,得到露天采场的矩形范围信息;基于矩形范围信息,在待检测遥感影像上进行截取,得到影像块,并在影像块上叠加NDVI和RRI波段得到具有红、绿、蓝、近红、NDVI、RRI六个波段的待提取影像;将待提取影像输入至改进的U‑Net网络,得到露天采场提取结果。本发明用以解决现有技术中消耗计算机内存和运行时间,以及识别露天矿采场的精度低的缺陷,实现了提升定位和提取的计算效率和精度。
-
公开(公告)号:CN113887459B
公开(公告)日:2022-03-25
申请号:CN202111185384.5
申请日:2021-10-12
Applicant: 中国矿业大学(北京) , 中国自然资源航空物探遥感中心 , 北京数论科技有限公司
Abstract: 本发明公开了一种基于改进Unet++的露天矿区采场变化区域检测方法,其方法如下:A、获取至少两个年份的采场样本数据集,采场样本数据集中的数据为露天矿区采场的高分辨率遥感影像;B、基于Pytorch设计构建改进的Unet++网络模型,Unet++网络模型以Unet++作为基础网络结构,引入可变形卷积模块和CBAM注意力机制模块,CBAM注意力机制模块包括通道注意力模块和空间注意力模块;C、Unet++网络模型训练:利用训练数据集对Unet++网络模型进行训练并得到训练后的Unet++网络模型。本发明将多尺度可变形卷积引入Unet++网络模型并用于露天矿区场景特征提取,提高了鲁棒性与识别精度;通过在可变形卷积Unet++网络中加入深度学习注意力机制,增强模型对实质性变化类特征的学习与敏感程度。
-
公开(公告)号:CN113920262A
公开(公告)日:2022-01-11
申请号:CN202111201530.9
申请日:2021-10-15
Applicant: 中国矿业大学(北京) , 国家能源投资集团有限责任公司 , 北京低碳清洁能源研究院 , 神华北电胜利能源有限公司
Abstract: 本发明公开了一种增强边缘取样与改进Unet模型的矿区FVC计算方法,A、矿区场景下地面植被参数数据采集;B、构建基于扩大选区交叉重叠法的样本数据集;C、构建并训练改进Unet神经网络模型;D、利用改进Unet神经网络模型计算矿区植被覆盖度。本发明首先通过无人机飞行采集遥感数据以及地面土壤植被覆盖度、布设地面控制点构建植被相关数据采集体系,为植被覆盖度计算提供数据基础,然后利用扩大选区交替重叠取样法对训练样本数据进行分割提取组建植被覆盖度样本数据库,最后利用改进Unet网络模型进行模型训练与构筑植被覆盖度网络关系模型,进而精确推演出植被覆盖度厘米级别信息数据,为矿区生态环境监测管理、矿区开采发展计划提供有力的数据支持。
-
公开(公告)号:CN117671437A
公开(公告)日:2024-03-08
申请号:CN202311359531.5
申请日:2023-10-19
Applicant: 中国矿业大学(北京)
IPC: G06V10/80 , G06V10/82 , G06V10/774 , G06V10/764 , G06N3/0464 , G06V20/10
Abstract: 本发明公开了一种基于多任务卷积神经网络的露天采场识别与变化检测方法,其方法包括:S1、采集研究区T1、T2两个时相的遥感影像数据,构建多任务卷积神经网络模型;S2、变化检测网络分支将第一识别网络分支得到的特征图与第二识别网络分支得到的特征图进行差分融合得到编码特征图,然后通过跳跃连接并进行特征融合得到特征图Dt‑5、Dt‑4、Dt‑3、Dt‑2;S3、变化检测网络分支将特征图Dt1‑2与特征图Dt2‑2进行差分融合得到特征图Da‑t2;S4、将特征图Dt‑2分别与通道注意力权重、空间注意力权重相乘运算得到特征图D′t‑2,然后通过上采样操作得到变化检测结果。本发明构建有基于孪生VGG‑16网络结构的多任务卷积神经网络模型,能够快速高效地应用于露天矿区采场识别与变化区域自动检测。
-
-
-
-
-
-
-
-
-