基于多任务卷积神经网络的露天采场识别与变化检测方法

    公开(公告)号:CN117671437B

    公开(公告)日:2024-06-18

    申请号:CN202311359531.5

    申请日:2023-10-19

    Abstract: 本发明公开了一种基于多任务卷积神经网络的露天采场识别与变化检测方法,其方法包括:S1、采集研究区T1、T2两个时相的遥感影像数据,构建多任务卷积神经网络模型;S2、变化检测网络分支将第一识别网络分支得到的特征图与第二识别网络分支得到的特征图进行差分融合得到编码特征图,然后通过跳跃连接并进行特征融合得到特征图Dt‑5、Dt‑4、Dt‑3、Dt‑2;S3、变化检测网络分支将特征图Dt1‑2与特征图Dt2‑2进行差分融合得到特征图Da‑t2;S4、将特征图Dt‑2分别与通道注意力权重、空间注意力权重相乘运算得到特征图D′t‑2,然后通过上采样操作得到变化检测结果。本发明构建有基于孪生VGG‑16网络结构的多任务卷积神经网络模型,能够快速高效地应用于露天矿区采场识别与变化区域自动检测。

    基于改进Mask R-CNN的矿区无人机影像沙棘识别方法及系统

    公开(公告)号:CN117351359B

    公开(公告)日:2024-06-21

    申请号:CN202311378728.3

    申请日:2023-10-24

    Abstract: 本发明公开了一种基于改进Mask R‑CNN的矿区无人机影像沙棘识别方法及系统,其方法包括:S1、构建包括特征提取网络、注意力机制模块、RPN区域生成网络、检测头网络系统的改进Mask R‑CNN网络模型,特征提取网络对输入影像处理得到特征图P2~P6;S2、注意力机制模块对输入特征图加权处理得到特征图Q2~Q6;S3、RPN区域生成网络遍历特征图Q2~Q6每个像素点并得到候选目标区域RoIs;检测头网络系统经过识别与分割相结合的处理得到包含边界框、类别信息的特征图像;S4、采集研究区的正射影像输入训练后的改进Mask R‑CNN网络模型并得到所对应的特征图像。本发明提高了沙棘的识别效率和准确性,能够更可靠地捕捉和分析沙棘植被数据,为矿区沙棘的管理和维护提供有力支持。

    基于改进Mask R-CNN的矿区无人机影像沙棘识别方法及系统

    公开(公告)号:CN117351359A

    公开(公告)日:2024-01-05

    申请号:CN202311378728.3

    申请日:2023-10-24

    Abstract: 本发明公开了一种基于改进Mask R‑CNN的矿区无人机影像沙棘识别方法及系统,其方法包括:S1、构建包括特征提取网络、注意力机制模块、RPN区域生成网络、检测头网络系统的改进Mask R‑CNN网络模型,特征提取网络对输入影像处理得到特征图P2~P6;S2、注意力机制模块对输入特征图加权处理得到特征图Q2~Q6;S3、RPN区域生成网络遍历特征图Q2~Q6每个像素点并得到候选目标区域RoIs;检测头网络系统经过识别与分割相结合的处理得到包含边界框、类别信息的特征图像;S4、采集研究区的正射影像输入训练后的改进Mask R‑CNN网络模型并得到所对应的特征图像。本发明提高了沙棘的识别效率和准确性,能够更可靠地捕捉和分析沙棘植被数据,为矿区沙棘的管理和维护提供有力支持。

    基于多任务卷积神经网络的露天采场识别与变化检测方法

    公开(公告)号:CN117671437A

    公开(公告)日:2024-03-08

    申请号:CN202311359531.5

    申请日:2023-10-19

    Abstract: 本发明公开了一种基于多任务卷积神经网络的露天采场识别与变化检测方法,其方法包括:S1、采集研究区T1、T2两个时相的遥感影像数据,构建多任务卷积神经网络模型;S2、变化检测网络分支将第一识别网络分支得到的特征图与第二识别网络分支得到的特征图进行差分融合得到编码特征图,然后通过跳跃连接并进行特征融合得到特征图Dt‑5、Dt‑4、Dt‑3、Dt‑2;S3、变化检测网络分支将特征图Dt1‑2与特征图Dt2‑2进行差分融合得到特征图Da‑t2;S4、将特征图Dt‑2分别与通道注意力权重、空间注意力权重相乘运算得到特征图D′t‑2,然后通过上采样操作得到变化检测结果。本发明构建有基于孪生VGG‑16网络结构的多任务卷积神经网络模型,能够快速高效地应用于露天矿区采场识别与变化区域自动检测。

Patent Agency Ranking