-
公开(公告)号:CN109029832A
公开(公告)日:2018-12-18
申请号:CN201810698959.5
申请日:2018-06-29
Applicant: 中国矿业大学 , 苏州南智传感科技有限公司 , 南京大学(苏州)高新技术研究院
CPC classification number: G01L11/025 , G01B11/16 , G01K11/32
Abstract: 本发明公开了一种基于一体式光纤传感器监测采动含水层水压的方法,采用将紧套传感光纤Ⅰ、松套光纤、紧套传感光纤Ⅱ相结合后形成一体式光纤传感器,其具有较小的体积,避免了因占用体积较大对周围岩层的影响;然后其中紧套传感光纤Ⅰ用于监测岩土体的轴向变形量,松套光纤用于测量含水层水位及采动裂隙中的渗水量,紧套传感光纤Ⅱ用于检测含水层的水压力值,弥补了传统光纤传感器的单一性,从而可对同一监测孔进行应变、水温及水压的分布式监测;根据同一监测孔中监测应变、水压、水温变化幅度,确定监测孔周围区域发生突水的可能性,其能大大提高突水预测的精确性,从而使工作人员迅速采取应对措施,避免灾害发生保护人身安全。
-
公开(公告)号:CN110031505A
公开(公告)日:2019-07-19
申请号:CN201910283067.3
申请日:2019-04-10
Applicant: 南京大学 , 南京大学(苏州)高新技术研究院 , 苏州南智传感科技有限公司
IPC: G01N25/20
Abstract: 本发明涉及一种水热耦合模型实验装置,主体部包括箱体、可开闭的箱盖,箱体的内部可抽出地设置有滤板组合,滤板组合包括至少两块滤板,至少两块滤板将箱体的内部分隔为依次排列的至少三个区域,至少三个区域中至少两个为内部分别设置有供水管组的第一区域;加热供水机组的数目与第一区域数量相同,且对应地与各第一区域所在位置的进水口和出水口相连接,每个加热供水机组包括水箱、水泵。通过连接不同的进水口和出水口可以控制含水层中水体的渗流方向和渗流速度,从而可以模拟不同的水流状态;各第一区域形成相对封闭水循环,可以设置水体不同的压力和温度,且基本维持稳定;通过滤板组合,可以很方便的设置出不同层的土体。
-
公开(公告)号:CN103575198B
公开(公告)日:2016-02-10
申请号:CN201310403142.8
申请日:2013-09-06
Applicant: 南京大学 , 苏州南智传感科技有限公司 , 南京大学(苏州)高新技术研究院 , 中国地质调查局南京地质调查中心
Abstract: 本发明公开了一种地面变形气囊模拟方法,通过人工开槽或者建立室内模型槽,根据设计要求分层回填土样,并将一个或几个饱和气囊埋置于槽内设定的位置,在回填的过程同时埋设相关的地面变形监测仪器;回填后,通过控制开关按一定的速度减少气囊内气压,使气囊所在位置周围土体失压下沉,形成不均匀沉降,产生地面沉降、地裂缝和地面塌陷等地面变形,从而模拟整个地面变形的发生和发展过程,并验证在地面变形过程中,所采用的监测方法对地面变形发生和发展监测的定位精度和长度。为地面沉降、地裂缝、地面塌陷等地面变形的模拟提供一种简单可行的方法。
-
公开(公告)号:CN103438820A
公开(公告)日:2013-12-11
申请号:CN201310399092.0
申请日:2013-09-05
Applicant: 南京大学 , 苏州南智传感科技有限公司 , 南京大学(苏州)高新技术研究院
IPC: G01B11/16
Abstract: 本发明公开了一种钻孔剖面岩土体分层变形光纤测量方法,选择测量点,钻孔后对土层进行编录,成孔后,下放感测光纤后对孔进行回填,当感测光纤周围的岩土体发生变形时,由于周围土体的包裹力,将带动感测光纤发生变形,通过BOTDR/A等技术测量感测光纤的应变分布,即可获得钻孔剖面相应位置的应变分布情况,将获取的应变沿着光纤进行相应位置的积分便可得出深部岩土体各个土层的变形情况,从而实现钻孔剖面岩土体分层变形分布式测量。适用于地面沉降、地面塌陷、矿山等岩土体变形监测领域。
-
公开(公告)号:CN103575198A
公开(公告)日:2014-02-12
申请号:CN201310403142.8
申请日:2013-09-06
Applicant: 南京大学 , 苏州南智传感科技有限公司 , 南京大学(苏州)高新技术研究院 , 中国地质调查局南京地质调查中心
Abstract: 本发明公开了一种地面变形气囊模拟方法,通过人工开槽或者建立室内模型槽,根据设计要求分层回填土样,并将一个或几个饱和气囊埋置于槽内设定的位置,在回填的过程同时埋设相关的地面变形监测仪器;回填后,通过控制开关按一定的速度减少气囊内气压,使气囊所在位置周围土体失压下沉,形成不均匀沉降,产生地面沉降、地裂缝和地面塌陷等地面变形,从而模拟整个地面变形的发生和发展过程,并验证在地面变形过程中,所采用的监测方法对地面变形发生和发展监测的定位精度和长度。为地面沉降、地裂缝、地面塌陷等地面变形的模拟提供一种简单可行的方法。
-
公开(公告)号:CN110031505B
公开(公告)日:2020-05-01
申请号:CN201910283067.3
申请日:2019-04-10
Applicant: 南京大学 , 南京大学(苏州)高新技术研究院 , 苏州南智传感科技有限公司
IPC: G01N25/20
Abstract: 本发明涉及一种水热耦合模型实验装置,主体部包括箱体、可开闭的箱盖,箱体的内部可抽出地设置有滤板组合,滤板组合包括至少两块滤板,至少两块滤板将箱体的内部分隔为依次排列的至少三个区域,至少三个区域中至少两个为内部分别设置有供水管组的第一区域;加热供水机组的数目与第一区域数量相同,且对应地与各第一区域所在位置的进水口和出水口相连接,每个加热供水机组包括水箱、水泵。通过连接不同的进水口和出水口可以控制含水层中水体的渗流方向和渗流速度,从而可以模拟不同的水流状态;各第一区域形成相对封闭水循环,可以设置水体不同的压力和温度,且基本维持稳定;通过滤板组合,可以很方便的设置出不同层的土体。
-
公开(公告)号:CN109556524A
公开(公告)日:2019-04-02
申请号:CN201811568562.0
申请日:2018-12-21
Applicant: 中国矿业大学 , 中铁十四局集团大盾构工程有限公司 , 苏州南智传感科技有限公司
IPC: G01B11/02
Abstract: 本发明提供一种基于光纤光栅技术的裂缝宽度监测系统及方法,包括光纤光栅位移监测杆、光纤光栅解调仪和裂缝宽度监测方法。将光纤光栅位移监测杆安装在地裂缝发育的监测区域,通过传输光纤光栅解调仪量测多个光纤光栅位移监测杆之间光纤光栅位移传感器的位移变化量,通过解调仪中无线数据传输模块,将位移数据发送至远程监控室,实现裂缝位移无线监测系统。本发明提出裂缝宽度监测方法,通过裂缝监测区域中两点直线式、三点三角形式传感器的布置工艺,提出裂缝变形位移计算公式,确定裂缝变形的相对位移或绝对位移,解决了采动沉陷区和地下水抽采区等地裂缝测量的高精度要求。
-
公开(公告)号:CN107543568B
公开(公告)日:2023-07-21
申请号:CN201710832188.X
申请日:2017-09-15
Applicant: 南京大学(苏州)高新技术研究院
Abstract: 本发明涉及一种分布式传感光缆的随钻布设方法及装置,所述电动机、卷扬机、行走机构和机架固定于底座上;所述定滑轮组安装于机架顶端;所述振动装置顶端,通过拉索绕过定滑轮组,与卷扬机连接;所述振动装置底端,与套管顶端固定连接;所述套管底端安装管靴。该随钻布设方法主要包括以下步骤:1)清场:清整场地,标记测量点;2)就位:光缆布设机就位;3)沉管:振动沉管至规定深度;4)提管:提升套管,光缆固于孔内;5)换锤:剪断、松开光缆,换上新的光缆护锤;6)移位:移动光缆布设机至下一个标记点,重复操作进行下一轮布设;7)监测:光缆互联形成分布式的监测网络。具有微创、安装简单、无需回填材料等优点。
-
公开(公告)号:CN110263362A
公开(公告)日:2019-09-20
申请号:CN201910337085.5
申请日:2019-04-25
Applicant: 南京大学(苏州)高新技术研究院
IPC: G06F17/50
Abstract: 本发明公开了一种基于孔隙密度流的岩土体离散元流固耦合数值模拟方法,包括生成固体颗粒随机堆积模型、剖分识别孔隙网络、孔隙渗流方程建立、孔隙流体及相邻固体颗粒对固体的作用、固体位移对孔隙流体的作用、更新孔隙渗流参数,重复以上步骤直至固体颗粒平衡及孔隙流体渗流稳定,本发明极大地减小了计算量,并建立孔隙流体状态方程,通过密度天然地将温度场与渗流场耦合起来,类比宏观达西定律建立细观渗流方程实现孔隙渗流计算,基于孔隙尺度能高效地模拟较为复杂的宏观现象。
-
公开(公告)号:CN109594552A
公开(公告)日:2019-04-09
申请号:CN201811572106.3
申请日:2018-12-21
Applicant: 南京大学(苏州)高新技术研究院
Abstract: 本发明公开了一种微生物固化-纤维加筋联合改性砂土的方法,属于地质工程-微生物交叉学科领域。包括以下步骤:1)将纤维材料加入至砂土中加水搅拌均匀,装入模具中,压实填满后静置晾干备用;2)将具有矿化作用的微生物菌液活化;3)将砂土浸没于活化好的菌液中;4)将处理后的砂土转移至养护装置中,灌入胶结液进行胶结固化。本发明将MICP技术与纤维加筋技术相结合对砂土进行改性处理,不仅使松散的砂土被固化成型强度得以提高,同时纤维的加入还能显著降低砂土固化体的脆性,提高其残余强度和韧性,从整体上改良了传统MICP固化砂土的工程性质,对进一步提高工程结构的安全性和稳定性具有重要意义。
-
-
-
-
-
-
-
-
-