-
公开(公告)号:CN118413675B
公开(公告)日:2024-09-24
申请号:CN202410879262.3
申请日:2024-07-02
Applicant: 中国矿业大学
Abstract: 本发明公开了一种基于上下文渐进式三平面编码图像压缩算法及终端设备,具体包括:S1、通过MPEG算法将可视相机采集的视频流进行压缩,并获取编码格式为H265的可视图像;S2、通过编码器和超编码器依次将可视图像X转换为潜在张量Y和超潜在张量Z,此外使用超解码器得到表示Y的平均值和标准差;S3、通过概率计算模块使用平均值、标准差和已编码的三平面来评估值;S4、设计一个基于上下文的速率降低模块,预测每个三平面的值并通过残差块和卷积层进行融合,最后使用激活函数;S5、设计一个基于上下文的失真降低模块,在熵解码之后进行图像重构X;S6、最后,通过超解码器将改进的潜在张量进行图像重建。
-
公开(公告)号:CN118411306B
公开(公告)日:2024-09-24
申请号:CN202410888768.0
申请日:2024-07-04
Applicant: 中国矿业大学
Abstract: 本发明涉及本发明涉及图像处理领域,具体公开了一种图像实时可控去噪方法、系统及计算机可读介质。图像实时可控去噪方法包括:通过主干网络生成多个固定级别的噪声特征图;将这些噪声特征图作为输入送入噪声去相关模块,强化其噪声分布的正交性;对得到的零相关噪声特征图进行简单的线性插值实现可控的去噪效果;自动调整模块给出一组最优的控制参数以生成最终的去噪图像。利用上述方法,在噪声去相关过程中加强了噪声特征图的正交性,从而通过噪声特征图插值实现任意噪声级别控制,且不需要网络推理,实现了图像去噪过程的实时性与可控性。
-
公开(公告)号:CN117560494B
公开(公告)日:2024-03-19
申请号:CN202410038681.4
申请日:2024-01-11
Applicant: 中国矿业大学 , 江苏比特达信息技术有限公司
IPC: H04N19/132 , H04N19/177 , H04N19/172
Abstract: 一种用于矿下低质视频快速增强的编码方法,步骤:利用检测摄像头获取煤矿井下多种光线条件下的低照度和低清晰度视频流数据;对获取的视频流数据进行处理,截取出低照度场景视频,构建井下低质视频数据集;通过帧插值器接收两个参考帧并进行帧插值操作生成一个参考帧;确定Gop结构,利用I帧编码器和P帧编码器分别对I帧和P帧进行编码;将参考帧作为参考,通过当前P帧编码器对输入的B帧进行编码。本发明为现有的神经P帧编解码器增加B帧编码功能,大大提高了P帧编码器对低质视频的增强编码性能,且具有很强的灵活性和泛化性;实现了对Gop结构的全面分析,提高了整体编码效率;为煤矿安全管理提供科学数据支持,提高了安全管理水平。
-
公开(公告)号:CN117528085A
公开(公告)日:2024-02-06
申请号:CN202410020281.0
申请日:2024-01-08
Applicant: 中国矿业大学 , 燕园安全科技(徐州)有限公司
IPC: H04N19/124 , H04N19/132 , H04N19/88 , H04N19/91 , G06T9/00 , G06V10/762 , G06V10/82 , G06N3/0464 , G06N3/0895
Abstract: 本发明公开了一种基于智能特征聚类的视频压缩编码方法,包括以下步骤:步骤1、将视频进行预处理后利用深度学习模型对视频进行智能特征提取;步骤2、采用特征聚类算法对提取出的特征进行聚类,将相似或冗余的特征整合在一起,为后续编码提供更有效的数据结构;步骤3、对聚类后的特征集进行编码,通过视觉增强和数据压缩的联合制定来进行视频压缩;步骤4、在解码端,根据编码数据和聚类中心信息,恢复出原始的特征集;步骤5、利用深度学习模型的重建模块,根据解码后的特征集重建原始视频。本发明能够准确有效地进行特征提取和压缩编码,同时具有较高的压缩比和图像质量。
-
公开(公告)号:CN118301353B
公开(公告)日:2024-09-17
申请号:CN202410728757.6
申请日:2024-06-06
Applicant: 中国矿业大学
IPC: H04N19/154 , H04N19/159 , H04N19/63 , H04N19/91 , H04N19/94 , G06V10/46 , G06V10/28 , G06V10/30 , G06V10/44
Abstract: 一种基于小波变换的红外与微波信息视频编码融合方法,步骤包括采集同一场景下的红外视频流和微波成像设备的信息片段;对红外视频流进行逐帧提取、去噪、对比度增强的预处理操作,对微波信息片段进行去除伪影、动态范围压缩的预处理操作;对红外视频帧及微波信息片段进行特征提取;通过小波变换融合算法进行融合编码,生成融合视频帧,进行去噪及细节增强的后处理操作;采用H.265/HEVC将融合后的图像序列编码成视频文件。实现了多模态的信息融合,获得更全面和完善的场景信息;通过尺度不变特征变换算法,提高融合的准确性。通过小波变换算法,有效融合红外图像和微波信息,扩大了红外视频和微波信息视频编码融合技术的适用范围。
-
公开(公告)号:CN118474374A
公开(公告)日:2024-08-09
申请号:CN202410941649.7
申请日:2024-07-15
Applicant: 中国矿业大学
IPC: H04N19/159 , H04N19/30 , H04N19/59 , H04N19/85 , H04N19/13
Abstract: 本发明公开了一种基于上下文帧间压缩的视频编码方法,属于视频编码技术领域。本发明包括以下步骤:步骤1、通过摄像头采集视频流,对这些监控视频进行预处理;步骤2、利用上下文信息进行帧间压缩,对输入的监控视频进行分层编码,以减小数据冗余并保留关键特征信息;步骤3、在解码端,对编码后的数据进行解码,恢复成可以进行分析的格式;步骤4、对解码后图像进行特征提取,将提取的特征存储于数据库中,以便进行后续的匹配和检索操作。
-
公开(公告)号:CN117541865B
公开(公告)日:2024-06-04
申请号:CN202311517773.2
申请日:2023-11-14
Applicant: 中国矿业大学 , 燕园安全科技(徐州)有限公司
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06N3/0464
Abstract: 本发明公开了一种基于粗粒度深度估计的身份分析和手机使用检测方法,包括以下步骤:设计位置估计模型,准备数据集;将数据集输入位置估计模型中进行训练;通过训练后的模型检测车内人员和手机并输出检测信息,输出信息包括目标类别、检测框及深度信息;对于车内所有检测到的人员通过联合深度信息的粗粒度深度值和感兴趣区域的方法来判定身份;对于所有检测到的手机通过联合深度信息的粗粒度深度值和距离驾驶员检测框中心点的距离的方法来判定驾驶员是否使用手机。本发明可准确区分车内人员身份,判断驾驶员是否使用手机,满足对于驾驶人员行为不同的检测需求,有助于提高驾驶的安全性。
-
公开(公告)号:CN118037870A
公开(公告)日:2024-05-14
申请号:CN202410412342.8
申请日:2024-04-08
Applicant: 中国矿业大学 , 永城煤电控股集团有限公司 , 江苏比特达信息技术有限公司
Abstract: 本发明属于图像处理技术领域,公开了一种兼容Zdepth的并行化深度图像压缩算法,s1采集深度图像进行预处理后准备进行s2量化处理,经过s2量化处理,图像数据被简化为较少的比特表示,随即进入s3零压缩阶段,系统识别并压缩量化后数据中的连续零值,进一步减少数据的存储需求,完成s3零值的压缩处理后,数据将进入s4预测分块压缩阶段,系统通过分析每个数据块内的像素关系,进行进一步压缩数据,s5数据输出,将所有压缩后的数据通过ZSTD算法压缩,并依序输出到文件系统,同时公开了基于该算法的图像压缩装置和终端设备。本发明通过优化数据结构和压缩流程,能够显著提高深度图像的压缩和解压速度,同时保证压缩后深度图像的质量。
-
公开(公告)号:CN117541865A
公开(公告)日:2024-02-09
申请号:CN202311517773.2
申请日:2023-11-14
Applicant: 中国矿业大学 , 燕园安全科技(徐州)有限公司
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06N3/0464
Abstract: 本发明公开了一种基于粗粒度深度估计的身份分析和手机使用检测方法,包括以下步骤:设计位置估计模型,准备数据集;将数据集输入位置估计模型中进行训练;通过训练后的模型检测车内人员和手机并输出检测信息,输出信息包括目标类别、检测框及深度信息;对于车内所有检测到的人员通过联合深度信息的粗粒度深度值和感兴趣区域的方法来判定身份;对于所有检测到的手机通过联合深度信息的粗粒度深度值和距离驾驶员检测框中心点的距离的方法来判定驾驶员是否使用手机。本发明可准确区分车内人员身份,判断驾驶员是否使用手机,满足对于驾驶人员行为不同的检测需求,有助于提高驾驶的安全性。
-
公开(公告)号:CN118474377A
公开(公告)日:2024-08-09
申请号:CN202410926618.4
申请日:2024-07-11
Applicant: 中国矿业大学
IPC: H04N19/172 , H04N19/52 , H04N19/42 , H04N19/43 , H04N19/44
Abstract: 本发明涉及视频处理与编码技术领域,具体公开了一种支持多种计算复杂度的深度视频编解码方法。该深度视频解码方法包括:S1、在编码器一侧以输入帧和参考帧作为输入,进行运动估计;S2、通过运动压缩模块处理来自运动估计模块的运动信息,得到解码运动信息;S3、通过给定的参考帧与解码运动信息,执行运动补偿,生成预测帧;S4、通过残差压缩模块,根据输入帧和预测帧生成残差信息;S5、将重构后的残差信息添加回预测帧中,生成重构输出帧。利用上述方法,实现使用一个学习解码器而不是多个解码器,就能同时支持多种复杂度级别的效果,并且能够在性能下降可忽略不计的情况下提高其解码效率。
-
-
-
-
-
-
-
-
-