-
公开(公告)号:CN113095229B
公开(公告)日:2024-04-12
申请号:CN202110399589.7
申请日:2021-04-14
Applicant: 中国矿业大学
IPC: G06V40/10 , G06V20/40 , G06V10/74 , G06V10/764 , G06V10/774
Abstract: 本发明涉及一种无监督域自适应行人重识别系统及方法,属于行人重识别技术领域,解决了现有无监督域自适应行人重识别难度大、识别准确率低的问题。该系统包括,数据获取模块,获取多个源域样本子集和多个目标域样本子集;网络模型训练模块,获得行人重识别网络模型的分类损失函数和样本不变性损失函数,根据源域样本子集中每一行人图片与目标域样本子集中每一行人图片的相似度对目标域样本子集中的行人图片进行排序、分层以获得分层损失函数,进而对行人重识别网络模型进行迭代优化;重识别模块,利用优化好的行人重识别网络模型进行行人重识别,获得与待识别行人图像相同或相似的图像。该系统能够减少网络的迁移损失,提高行人重识别的精度。
-
公开(公告)号:CN113762166A
公开(公告)日:2021-12-07
申请号:CN202111055754.3
申请日:2021-09-09
Applicant: 中国矿业大学
Abstract: 一种基于可穿戴式装备的小目标检测改善方法及系统,提出的可穿戴式的小目标检测装备,简便易携,可以迅速准确的检测出对象目标;改进了SSD网络结构,将空洞卷积空间金字塔模块和特征金字塔融合模块加入到SSD结构中,考虑到上下文的语义信息、位置信息,更加准确的检测目标;将视觉推理模型引入到基于SSD的小目标检测中,可以改善SSD类算法识别准确较低的问题。
-
公开(公告)号:CN113627380A
公开(公告)日:2021-11-09
申请号:CN202110959012.7
申请日:2021-08-20
Applicant: 中国矿业大学 , 江苏华图矿业科技有限公司
Abstract: 本发明是一种用于智能安防及预警的跨视域行人重识别方法及系统,方法包括如下步骤:步骤1预处理源域样本和目标域样本,步骤2通过ResNet50提取样本特征向量,步骤3特征提取后特征向量拼接,步骤4计算距离,生成伪标签,步骤5重识别,生成伪标签计算进行损失计算。本发明有效地对引入姿态估计点,对混杂背景进行遮挡处理,利用遮挡,防止网络将注意力集中在背景信息上,使网络学习能力变强,从而增加无监督行人重识别的识别精度,本发明有效利用了图片的相机索引、时间信息,考虑到在特定时间段和视角不重叠的特性,在相同相机下的行人图像置信度高和不同相机下的行人图像置信度低,为跨境头下的行人检索提供了很好的约束。
-
公开(公告)号:CN113627380B
公开(公告)日:2024-03-15
申请号:CN202110959012.7
申请日:2021-08-20
Applicant: 中国矿业大学 , 江苏华图矿业科技有限公司
IPC: G06V40/10 , G06V10/80 , G06V10/74 , G06V10/82 , G06V10/762 , G06N3/0895
Abstract: 本发明是一种用于智能安防及预警的跨视域行人重识别方法及系统,方法包括如下步骤:步骤1预处理源域样本和目标域样本,步骤2通过ResNet50提取样本特征向量,步骤3特征提取后特征向量拼接,步骤4计算距离,生成伪标签,步骤5重识别,生成伪标签计算进行损失计算。本发明有效地对引入姿态估计点,对混杂背景进行遮挡处理,利用遮挡,防止网络将注意力集中在背景信息上,使网络学习能力变强,从而增加无监督行人重识别的识别精度,本发明有效利用了图片的相机索引、时间信息,考虑到在特定时间段和视角不重叠的特性,在相同相机下的行人图像置信度高和不同相机下的行人图像置信度低,为跨境头下的行人检索提供了很好的约束。
-
公开(公告)号:CN113065516B
公开(公告)日:2023-12-01
申请号:CN202110436855.9
申请日:2021-04-22
Applicant: 中国矿业大学 , 江苏华图矿业科技有限公司
IPC: G06V20/52 , G06V10/44 , G06V10/774 , G06V10/74 , G06V10/764 , G06N3/0464 , G06N3/047 , G06N3/088
Abstract: 本发明涉及一种基于样本分离的无监督行人重识别系统及方法,属于行人重识别技术领域,解决了现有行人重识别方法识别精度低的问题。该系统包括,数据获取模块,获取多个源域样本子集和多个目标域样本子集;网络模型训练模块,用于获得分类损失函数和样本不变性损失函数,根据目标域样本子集中各行人图片间的相似度方差获得样本分离损失函数,根据目标域样本子集中正样本组、负样本组分别与存储的目标域样本间的相似度获得无监督三元组损失函数,进而对行人重识别网络模型进行迭代优化;重识别模块,根据优化好的行人重识别网络模型对待识别行人图片进行识别。该系统能够很好的区分目(56)对比文件谢川 等.基于对抗生成网络的蒙特卡罗噪声去除算法《.模式识别与人工智能》.2018,第31卷(第11期),1047-1060.Jiahan Li 等.Unsupervised Person Re-Identification Based on Measurement Axis.《IEEE SIGNAL PROCESSING LETTERS》.2021,第28卷379-383.Alexander Hermans 等.In Defense ofthe Triplet Loss for Person Re-Identification《.https://arxiv.org/pdf/1703.07737.pdf》.2017,1-17.Nazia Perwaiz 等.Person Re-Identification Using HybridRepresentation Reinforced by MetricLearning《.IEEE Access》.2018,第6卷77334-77349.
-
公开(公告)号:CN113095229A
公开(公告)日:2021-07-09
申请号:CN202110399589.7
申请日:2021-04-14
Applicant: 中国矿业大学 , 江苏华图矿业科技有限公司
Abstract: 本发明涉及一种无监督域自适应行人重识别系统及方法,属于行人重识别技术领域,解决了现有无监督域自适应行人重识别难度大、识别准确率低的问题。该系统包括,数据获取模块,获取多个源域样本子集和多个目标域样本子集;网络模型训练模块,获得行人重识别网络模型的分类损失函数和样本不变性损失函数,根据源域样本子集中每一行人图片与目标域样本子集中每一行人图片的相似度对目标域样本子集中的行人图片进行排序、分层以获得分层损失函数,进而对行人重识别网络模型进行迭代优化;重识别模块,利用优化好的行人重识别网络模型进行行人重识别,获得与待识别行人图像相同或相似的图像。该系统能够减少网络的迁移损失,提高行人重识别的精度。
-
公开(公告)号:CN113065516A
公开(公告)日:2021-07-02
申请号:CN202110436855.9
申请日:2021-04-22
Applicant: 中国矿业大学 , 江苏华图矿业科技有限公司
Abstract: 本发明涉及一种基于样本分离的无监督行人重识别系统及方法,属于行人重识别技术领域,解决了现有行人重识别方法识别精度低的问题。该系统包括,数据获取模块,获取多个源域样本子集和多个目标域样本子集;网络模型训练模块,用于获得分类损失函数和样本不变性损失函数,根据目标域样本子集中各行人图片间的相似度方差获得样本分离损失函数,根据目标域样本子集中正样本组、负样本组分别与存储的目标域样本间的相似度获得无监督三元组损失函数,进而对行人重识别网络模型进行迭代优化;重识别模块,根据优化好的行人重识别网络模型对待识别行人图片进行识别。该系统能够很好的区分目标域中正样本和负样本,从而降低网络精度损失,提高识别精度。
-
-
-
-
-
-