一种矿用智能视频分析中的图像检索方法

    公开(公告)号:CN111639212B

    公开(公告)日:2023-09-05

    申请号:CN202010464038.X

    申请日:2020-05-27

    Abstract: 本发明涉及一种矿用智能视频分析中的图像检索方法,属于图像检索技术领域,解决了现有技术检索准确率低、效率低,导致矿井安全生产视频监控中的异常行为和场景识别可靠性低的问题。该方法包括,对包含矿井异常信息的目标图像进行预处理获得相同的第一图像和第二图像;从第一图像中获得方差自适应量化颜色直方图;从第二图像中提取梯度信息和符号信息;将方差自适应量化颜色直方图、梯度信息及符号信息进行特征自适应融合获得目标图像的融合特征;对融合特征进行降维获得融合主特征;利用融合主特征在矿井视频所包含的多帧图像中进行检索以实时辨识矿井异常。该方法在提高检索效果的同时,提高了矿井异常监控效率,提升矿井的安全检测水平。

    三维场景重建中增强特征融合的单目深度估计系统及其方法

    公开(公告)号:CN115294282A

    公开(公告)日:2022-11-04

    申请号:CN202211003081.1

    申请日:2022-08-19

    Abstract: 本发明公开了一种三维场景重建中增强特征融合的单目深度估计系统,该系统包括单目深度估计网络,单目深度估计网络采用自监督方式优化训练;单目深度估计网络包括深度估计网络和位姿预测网络,深度估计网络用于帮助目标图像恢复深度;位姿预测网络用于输出邻帧间运动量;深度估计网络包括深度编码器和深度解码器;深度编码器接用于提取输入图像的深度信息特征;深度解码器生成各尺度的深度预测图;深度编码器与深度解码器采用全尺度跳跃连接,获得全尺度的编、解码器特征信息,并将其融合。本发明通过深度编码器和深度解码器采用全尺度跳跃连接,优化学习分配各层特征信息的参数权重,得到精确的深度边界与预测精度。

    一种非结构化环境的特种车辆自动驾驶路径规划方法

    公开(公告)号:CN117346805B

    公开(公告)日:2024-09-20

    申请号:CN202311150868.5

    申请日:2023-09-07

    Abstract: 一种非结构化环境的特种车辆自动驾驶路径规划方法,通过SLAM地面分割算法,将三维高度信息存储于相应栅格,获得非结构环境占用栅格图,再将所述栅格图地形数据划分为训练集和测试集;结合感知模块输入信息及特种车辆动力学建模,从栅格图地形数据中提取可通行区域,实现风险图构建;根据风险图构造自适应性的奖励函数,搭建强化学习模型以及Agent的神经网络;基于构建非结构化环境测试机进行训练,在每个训练周期初始化阶段构建随机函数,随机化起点和终点位置,使系统具泛化性;通过强化学习训练获得策略网络,在测试集中执行路径规划,实现非结构化环境下高效的处理环境信息,提高特种车辆面对不同地形的适应性及有效的自动驾驶。

    一种用于智能安防及预警的跨视域行人重识别方法及系统

    公开(公告)号:CN113627380B

    公开(公告)日:2024-03-15

    申请号:CN202110959012.7

    申请日:2021-08-20

    Abstract: 本发明是一种用于智能安防及预警的跨视域行人重识别方法及系统,方法包括如下步骤:步骤1预处理源域样本和目标域样本,步骤2通过ResNet50提取样本特征向量,步骤3特征提取后特征向量拼接,步骤4计算距离,生成伪标签,步骤5重识别,生成伪标签计算进行损失计算。本发明有效地对引入姿态估计点,对混杂背景进行遮挡处理,利用遮挡,防止网络将注意力集中在背景信息上,使网络学习能力变强,从而增加无监督行人重识别的识别精度,本发明有效利用了图片的相机索引、时间信息,考虑到在特定时间段和视角不重叠的特性,在相同相机下的行人图像置信度高和不同相机下的行人图像置信度低,为跨境头下的行人检索提供了很好的约束。

    一种基于整体注意力的矿井图像超分辨率重建系统及方法

    公开(公告)号:CN117173024A

    公开(公告)日:2023-12-05

    申请号:CN202311213700.4

    申请日:2023-09-20

    Abstract: 本发明属于图像超分辨率重建技术领域,涉及一种基于整体注意力的矿井图像超分辨率重建系统及方法;浅层特征输入到深层特征提取模块,深层特征提取模块由N个信息蒸馏块堆叠组成;层间融合注意力机制模块由M个层间金字塔注意力以金字塔结构组成,并通过1×1卷积层来降低维度以减少计算量和参数量,然后输入到3×3卷积层,并引入长跳跃连接,输出融合结果作为上采样及重建模块的输入;得到高分辨率图像;以信息蒸馏网络为框架,引入增强型自校准卷积可以有效地平衡好计算效率和网络性能,更满足现实应用的需求;层间融合注意力机制对多个信息蒸馏块的输出特征图自适应地分配权重,在融合处理后输入重建模块以实现不同深度特征图地充分利用。

Patent Agency Ranking