一种复杂场景下的实时在线行人分析与计数系统及方法

    公开(公告)号:CN110147743B

    公开(公告)日:2021-08-06

    申请号:CN201910381879.1

    申请日:2019-05-08

    Abstract: 本发明提供一种复杂场景下的实时在线行人分析与计数系统及方法,其中方法为以视频信息作为输入,通过数据预处理将视频数据转换为连续的RGB帧图像,利用原始的SSD网络进行人员目标检测;然后,将生成的多个建议框输入到两个并行的分支网络中用于人体关键点检测,一个为堆叠沙漏网络,用于位置修正和优化目标检测生成的建议框结果;另一个为姿态卷积机。本发明通过对特定的复杂场景进行分析并建立了一套完整的解决方案和框架,利用人体关键点这一高级特征将多个领域的算法进行有机的整合,能够解决实际工程场景下的人员的目标检测与跟踪、人体关键点分析、人体动作识别和计数分析等问题,具有广泛的应用场景。

    一种基于复杂场景下的人体关键点检测系统及方法

    公开(公告)号:CN108710868B

    公开(公告)日:2020-09-04

    申请号:CN201810582712.7

    申请日:2018-06-05

    Abstract: 本发明公开了一种基于复杂场景下的人体关键点检测系统及方法,该方法包含:输入监控视频信息,得到单帧静态图和多帧光流图;对单帧静态图通过卷积操作提取特征以得到特征图,为解决复杂场景下干扰目标对人员目标检测的影响,采用人员目标检测算法,以对特征图的实际置信度与预设置信度进行判别,得到离散化人员目标包围盒;对多帧光流图采用光流堆叠来形成二维矢量场;提取离散化人员目标包围盒中特征,得到特征图,获得部位的关键点和关联程度,利用预测器为人体每个部位生成部位置信图,通过部位置信图和二维矢量场实现人体关键点的精准检测。本发明的系统及方法用于复杂场景下的人体关键点检测,实现人员目标关键点的精准检测。

    一种基于火焰多特征融合的火灾识别方法

    公开(公告)号:CN109191761A

    公开(公告)日:2019-01-11

    申请号:CN201811034833.4

    申请日:2018-09-06

    Abstract: 本发明提出了一种基于火焰多特征融合的火灾识别方法,根据这个算法开发了一种火焰多特征融合的火灾识别系统。其原理在于通过该系统调用摄像头视频监控画面,使用系统的后台检测算法对画面进行处理,该方法首先进行运动检测筛选运动火灾像素与RGB颜色模型筛选火焰颜色像素结合作为图像预处理模块,采用的基于帧间差分法检测运算速度快并且不包含复杂运算,对于环境要求不高,不需要考虑黑天等因素的变化,采用的RGB/HIS颜色模型较为稳定;然后根据火焰烟雾、面积变化以及形状变化性质利用火焰像素点数量、凸包以及尖角对火焰进行特征判断;最终结合成熟的支持向量机进行验证;满足以上条件进行报警。本方法能够应用于社会安全等摄像头实时监控系统。

    一种基于复杂场景下的人体关键点检测系统及方法

    公开(公告)号:CN108710868A

    公开(公告)日:2018-10-26

    申请号:CN201810582712.7

    申请日:2018-06-05

    Abstract: 本发明公开了一种基于复杂场景下的人体关键点检测系统及方法,该方法包含:输入监控视频信息,得到单帧静态图和多帧光流图;对单帧静态图通过卷积操作提取特征以得到特征图,为解决复杂场景下干扰目标对人员目标检测的影响,采用人员目标检测算法,以对特征图的实际置信度与预设置信度进行判别,得到离散化人员目标包围盒;对多帧光流图采用光流堆叠来形成二维矢量场;提取离散化人员目标包围盒中特征,得到特征图,获得部位的关键点和关联程度,利用预测器为人体每个部位生成部位置信图,通过部位置信图和二维矢量场实现人体关键点的精准检测。本发明的系统及方法用于复杂场景下的人体关键点检测,实现人员目标关键点的精准检测。

    一种复杂场景下的实时在线行人分析与计数系统及方法

    公开(公告)号:CN110147743A

    公开(公告)日:2019-08-20

    申请号:CN201910381879.1

    申请日:2019-05-08

    Abstract: 本发明提供一种复杂场景下的实时在线行人分析与计数系统及方法,其中方法为以视频信息作为输入,通过数据预处理将视频数据转换为连续的RGB帧图像,利用原始的SSD网络进行人员目标检测;然后,将生成的多个建议框输入到两个并行的分支网络中用于人体关键点检测,一个为堆叠沙漏网络,用于位置修正和优化目标检测生成的建议框结果;另一个为姿态卷积机。本发明通过对特定的复杂场景进行分析并建立了一套完整的解决方案和框架,利用人体关键点这一高级特征将多个领域的算法进行有机的整合,能够解决实际工程场景下的人员的目标检测与跟踪、人体关键点分析、人体动作识别和计数分析等问题,具有广泛的应用场景。

    一种基于时空双分支网络的视频对象检测与分割方法

    公开(公告)号:CN110097568A

    公开(公告)日:2019-08-06

    申请号:CN201910391883.6

    申请日:2019-05-13

    Abstract: 本发明公开了一种基于时空双分支网络的视频对象检测与分割方法,该方法包含:以视频作为数据输入,通过视频序列预处理将其分成多张连续的RGB图像,输入到空间分支网络对相对较少的像素标记前景掩码进行微调以生成对象分割图像信息;然后进入时空联合网络训练的目标检测器进行边界重叠度评分,将所有重叠度大于阈值的候选边界框都输入到目标分类器中以检测目标的类别,输出目标类别的评分;通过目标过滤器精细修正对象的边界以进行分割,最后输出对象在图像中的坐标信息和相应的目标类别,实现了复杂场景下的视频对象检测与分割。本发明的方法能够应用于干扰目标繁多和极其复杂的实际场景中,提高了复杂场景下目标对象检测和分割的准确性。

    一种基于领域本体的油气大数据查询和存储方法

    公开(公告)号:CN110147376A

    公开(公告)日:2019-08-20

    申请号:CN201910454493.9

    申请日:2019-05-29

    Abstract: 本发明公开了一种基于领域本体的油气大数据查询和存储方法,该方法包含:通过领域本体内的概念及概念间的关系进行形式化统一表示完成本体的构建;以三元组和五元组的数据结构对多个领域中的知识和概念进行形式化的描述,实现RDF有向图非结构化存储;通过建立系列R2G结构化映射规则完成RDF有向图到Neo4j数据结构的映射,然后在Neo4j数据结构的基础上构建Key-Neo4j分布式存储模型,实现Neo4j数据库的分布式存储;形成了适用于石油领域本体的双层索引检索法,最后输出占用的存储空间大小和数据查询时间,实现了大数据环境下的海量资源的正常存储与动态扩展。本发明的方法能够有效地解决领域本体存储时的阻抗不匹配问题,极大地缓解了存储空间的负载压力。

Patent Agency Ranking