一种基于新浪微博的用户等级排序算法

    公开(公告)号:CN102663101B

    公开(公告)日:2015-10-28

    申请号:CN201210109215.8

    申请日:2012-04-13

    Abstract: 本发明公开了一种基于新浪微博的用户等级排序算法,包括如下步骤:a、抓取新浪微博中的实时数据;b、通过数据分析确定新浪微博中影响用户等级排序的制约因素;c、建立用户等级排序中用户影响力参考模型;d、建立用户等级排序中用户活跃度参考模型;e、通过用户影响力与用户活跃度模型加权获得用户权重计算模型,利用该模型实现新浪微博用户等级排序。可用于社交网络研究领域。本发明具有较高的合理性与较小的时间损耗,适用于实时网络环境中。

    一种基于新浪微博的用户等级排序算法

    公开(公告)号:CN102663101A

    公开(公告)日:2012-09-12

    申请号:CN201210109215.8

    申请日:2012-04-13

    Abstract: 本发明公开了一种基于新浪微博的用户等级排序算法,包括如下步骤:a、抓取新浪微博中的实时数据;b、通过数据分析确定新浪微博中影响用户等级排序的制约因素;c、建立用户等级排序中用户影响力参考模型;d、建立用户等级排序中用户活跃度参考模型;e、通过用户影响力与用户活跃度模型加权获得用户权重计算模型,利用该模型实现新浪微博用户等级排序。可用于社交网络研究领域。本发明具有较高的合理性与较小的时间损耗,适用于实时网络环境中。

    一种基于开源库与文本挖掘的并行漏洞挖掘方法

    公开(公告)号:CN104166680A

    公开(公告)日:2014-11-26

    申请号:CN201410332588.0

    申请日:2014-07-12

    CPC classification number: G06F21/577

    Abstract: 本发明涉及一种基于开源库与文本挖掘的并行漏洞挖掘方法,属于计算机信息安全技术领域。其步骤包括:从开源库获取漏洞数据以及数据预处理,提取漏洞集合,文本向量化,计算阈值,发现并行漏洞。本发明的优点有:基于开源信息库,提取同一攻击模式下相关漏洞信息,从而便于分析漏洞间潜在的并行关系;将漏洞的文字描述信息向量化,便于计算机系统对漏洞记录数据进行智能化处理;区别于基于关键字匹配的查询,本发明根据训练集得出的阈值考察漏洞间的相似度;可以计算漏洞间的并行关系,从而在发现一个漏洞被利用时迅速弥补其它并行漏洞,进而弥补整个网络的脆弱性,增强防御能力,对信息安全有很大的意义。

    一种基于开源库与文本挖掘的并行漏洞挖掘方法

    公开(公告)号:CN104166680B

    公开(公告)日:2017-05-17

    申请号:CN201410332588.0

    申请日:2014-07-12

    Abstract: 本发明涉及一种基于开源库与文本挖掘的并行漏洞挖掘方法,属于计算机信息安全技术领域。其步骤包括:从开源库获取漏洞数据以及数据预处理,提取漏洞集合,文本向量化,计算阈值,发现并行漏洞。本发明的优点有:基于开源信息库,提取同一攻击模式下相关漏洞信息,从而便于分析漏洞间潜在的并行关系;将漏洞的文字描述信息向量化,便于计算机系统对漏洞记录数据进行智能化处理;区别于基于关键字匹配的查询,本发明根据训练集得出的阈值考察漏洞间的相似度;可以计算漏洞间的并行关系,从而在发现一个漏洞被利用时迅速弥补其它并行漏洞,进而弥补整个网络的脆弱性,增强防御能力,对信息安全有很大的意义。

    一种基于图结构的中文新词识别方法

    公开(公告)号:CN103970733B

    公开(公告)日:2017-07-14

    申请号:CN201410143875.7

    申请日:2014-04-10

    Abstract: 本发明涉及一种基于图结构的中文新词识别方法,其步骤包括:1)根据词之间的邻接关系将文档集抽象成有权有向图;2)遍历所述有权有向图的所有点,基于共现率选出每一个点的备选新词;3)对所述备选新词进行路径拓展,找到共现率始终大于阈值的最大权值路径,从而得到完整的备选新词;4)根据信息熵对所述完整的备选新词进行过滤,得到最终的备选新词集合。本发明首次提出了将文档集抽象为图结构进行新词发现和识别的方法,将新词发现问题转化为在有向有权图上的最大权重路径寻找问题,很好地利用了图的特点,是一种时间复杂度较低、召回率和准确率都较高的新词发现和识别方法。

Patent Agency Ranking