基于深层混合因子分析的声学模型的构建方法

    公开(公告)号:CN109545201B

    公开(公告)日:2023-06-06

    申请号:CN201811537321.X

    申请日:2018-12-15

    Abstract: 本发明涉及语音识别技术领域,公开基于深层混合因子分析的声学模型的构建方法,包括:利用训练数据,采用HMM‑GMM模型生成基线系统;根据HMM‑GMM模型参数,对DMFA模型进行初始化,DMFA模型由两层MFA模型组成,采用GMM聚类和概率主成分分析方法初始化DMFA模型参数;利用训练数据,通过HMM‑GMM模型的基线系统,采用贪婪EM算法估计声学特征空间的DMFA模型的整体模型参数;估计DMFA模型的第一层MFA模型的状态模型参数,所述状态模型参数包括状态相关参数及状态无关参数;估计DMFA模型的第二层MFA模型的状态模型参数。本发明将深层混合因子分析模型引入到状态模型的建模过程中,提出了基于深层混合因子分析的声学模型,具备更好的抗过拟合能力。

    智能视频处理方法和系统

    公开(公告)号:CN108769576B

    公开(公告)日:2021-02-02

    申请号:CN201810443112.2

    申请日:2018-05-10

    Abstract: 本发明提供一种智能视频处理方法和系统,具体包括视频监控终端、多个远端机、多个近端机以及云端服务器,本发明从视频监控终端获取监控视频数据,将监控视频数据和当前位置信息、时间信息组合成多维视频帧保存在远端机中,同时从监控视频数据中提取出特征数据并与当前位置信息、时间信息组合成多维特征帧,将多维视频帧与多维特征帧关联并将多维特征帧发送到近端机;近端机将多维特征帧汇聚到云端服务器,以实现特定对象(人员、车辆)的追踪分析。本发明适用于已部署传统视频监控系统但智能化改造难度较大的场景,在不改变现有的视频监控系统部署架构的基础上,实现智能监控的功能,且有效降低了工程改造量和建设成本。

    一种声学模型的数据处理方法

    公开(公告)号:CN108630199A

    公开(公告)日:2018-10-09

    申请号:CN201810702540.2

    申请日:2018-06-30

    Abstract: 本发明提供一种声学模型的数据处理方法。该声学模型包括编码网络、注意力网络和解码网络,数据处理方法包括:步骤1、编码网络对语音特征序列(x1,x2,...,xT)进行编码得到高层特征序列(h1,h2,...,hT),xT表示待识别语音经过语音特征提取预处理后在T时刻的语音特征,hT表示所述语音特征xT在T时刻的高层特征;步骤2、注意力网络根据高层特征序列(h1,h2,...,hT)计算目标向量,目标向量用于对所述高层特征序列(h1,h2,...,hT)进行压缩;步骤3、解码网络根据高层特征序列(h1,h2,...,hT)和目标向量计算待识别语音每个位置上所有音素的后验概率以得到概率序列(y1,y2,...,yO),yO表示待识别语音经解码网络输出后在位置o上所有音素的后验概率。本发明能够减少参数训练规模,提升训练速度以及提升音素和语音特征对齐的准确度。

Patent Agency Ranking