-
公开(公告)号:CN116040629B
公开(公告)日:2025-02-28
申请号:CN202310074440.0
申请日:2023-01-18
Applicant: 中南林业科技大学
IPC: C01B32/348 , C01B32/324 , B01J20/20 , B01J20/30 , B01D53/04
Abstract: 本发明属于废气吸附领域,具体涉及一种含氮富氧木质素基多孔碳的制备方法,将包含木质素原料、氮源的水溶液进行水热处理,得到水热产物,其中,水热的温度为100~250℃,氮源为三聚氰胺、乙二胺、尿素中的至少一种;将水热产物和活化剂混合后经压片处理,得到圆片,再将所述的圆片在保护性气氛内进行热处理,制得所述的含氮富氧木质素基多孔碳;压片阶段,水热产物和活化剂的重量比为1:1.5~5;压力为15~25MPa;热处理的温度为550~800℃。本发明还提供了所述的制备方法制得的材料及其在二氧化碳吸附中的应用。本发明方法能够构建二氧化碳吸附适配的微观结构和活性位点,能够表现出优异的二氧化碳吸附效果。
-
公开(公告)号:CN118437389A
公开(公告)日:2024-08-06
申请号:CN202410467436.5
申请日:2024-04-18
Applicant: 中南林业科技大学
IPC: B01J29/80 , C07D307/68
Abstract: 本发明涉及一种复合催化材料,具体涉及过渡金属氧化物@HZSM‑5/SBA‑15复合催化剂及其制备和在FDCA合成中的应用,本发明所述的过渡金属氧化物@HZSM‑5/SBA‑15复合催化剂的制备方法,将HZSM‑5、SBA‑15和过渡金属源复合后在≥350℃的温度焙烧处理,即得;所述的过渡金属源中的过渡金属元素包含铁、铬、钴、锰中的至少一种;所述的HZSM‑5、SBA‑15的重量比为1~3:1~2;过渡金属源中的过渡金属元素在过渡金属氧化物@HZSM‑5/SBA‑15复合催化剂中的负载量为5~15wt.%。本发明创新地采用HZSM‑5、SBA‑15的协同复合,配合组合的过渡金属能够进一步实现协同,可意外地改善材料的界面、晶相和活性位点,进而能够意外地协同改善HMF的催化氧化活性,提高FDCA的选择性。
-
-
公开(公告)号:CN115254027B
公开(公告)日:2023-09-15
申请号:CN202211033239.X
申请日:2022-08-26
Applicant: 中南林业科技大学
Abstract: 本发明属于碳材料制备领域,具体涉及一种纤维型黏土/木质素碳多孔复合材料的制备方法,步骤包括:步骤(1):将酶解木质素和纤维型黏土进行液相混合,随后经真空冷冻干燥处理,制得前驱体;所述的纤维型黏土矿物为坡缕石、海泡石中的至少一种;步骤(2):将前驱体进行第一段焙烧,再将焙烧料和改性剂混合,进行第二段焙烧,随后经洗涤、干燥,即得所述的纤维型黏土/木质素碳多孔复合材料;所述的改性剂为路易斯酸、碱性物质中的至少一种;第一段焙烧的温度为700~900℃;第二段焙烧的温度为600~900℃。本发明还提供了所述的制备方法制得的材料及其作为吸附剂的应用。本发明所述的制备方法制得的材料具有优异的吸附性能。
-
公开(公告)号:CN116040629A
公开(公告)日:2023-05-02
申请号:CN202310074440.0
申请日:2023-01-18
Applicant: 中南林业科技大学
IPC: C01B32/348 , C01B32/324 , B01J20/20 , B01J20/30 , B01D53/04
Abstract: 本发明属于废气吸附领域,具体涉及一种含氮富氧木质素基多孔碳的制备方法,将包含木质素原料、氮源的水溶液进行水热处理,得到水热产物,其中,水热的温度为100~250℃,氮源为三聚氰胺、乙二胺、尿素中的至少一种;将水热产物和活化剂混合后经压片处理,得到圆片,再将所述的圆片在保护性气氛内进行热处理,制得所述的含氮富氧木质素基多孔碳;压片阶段,水热产物和活化剂的重量比为1:1.5~5;压力为15~25MPa;热处理的温度为550~800℃。本发明还提供了所述的制备方法制得的材料及其在二氧化碳吸附中的应用。本发明方法能够构建二氧化碳吸附适配的微观结构和活性位点,能够表现出优异的二氧化碳吸附效果。
-
公开(公告)号:CN112342642B
公开(公告)日:2023-04-07
申请号:CN202011372047.2
申请日:2020-11-30
Applicant: 中南林业科技大学
Abstract: 本发明公开了一种木质素电纺纤维制备碳纳米管的方法,包含:(1)以木质素、催化剂、溶剂为原料通过静电纺丝制得催化剂/木质素微纳米纤维;(2)将催化剂/木质素微纳米纤维在保护性气氛下热解;(3)将热解产物酸处理得到纯化的木质素基碳纳米管。本发明将催化剂与木质素制备成催化剂/木质素微纳米纤维,催化剂在纤维中形成了纳米颗粒,其在木质素中分散非常均匀,使得制备出的木质素基碳纳米管尺寸小且分布均匀。且本发明利用工业废弃物木质素作为碳源,采用催化热解法制备出高性能高价值的碳纳米管,可成为木质素高值利用的重要途径。该制备方法具有原料来源丰富、工艺简单、成本低廉的优点,在木质素高值利用领域有着很好的发展前景。
-
公开(公告)号:CN115142877A
公开(公告)日:2022-10-04
申请号:CN202210775344.4
申请日:2022-07-01
Applicant: 中铁五局集团第一工程有限责任公司 , 湖南长院悦诚装备有限公司 , 中铁上海工程局集团第一工程有限公司 , 中南林业科技大学
Inventor: 陆敬忠 , 徐井军 , 邓满林 , 魏波 , 刘翔 , 陆崚 , 鲍元飞 , 殷枝荣 , 李光均 , 李科军 , 张林 , 王永明 , 宋飞 , 陈淼林 , 孙振 , 庄星 , 靳菲菲 , 李勇 , 姚学军 , 谌鸿强 , 黄文静 , 张宇
Abstract: 本发明公开了一种基于隧道湿喷轨迹控制喷浆机机械臂喷涂的方法,涉及隧道领域,所述机械臂包括若干个依次连接的关节连杆,所述机械臂的末端关节连杆连接有喷头,包括:S1:根据运动位姿轨迹获取喷头在该轨迹上各点的位置与朝向;S2:根据喷头的位置与朝向利用预设逆向运动学模型,获取喷浆机喷头沿运动位姿轨迹进行湿喷时在轨迹各点处各关节连杆的旋转角度;S3:根据喷头在轨迹各点处各关节连杆的旋转角度控制机械臂的运动,以对待喷区域进行涂喷,其提供了一种能快速、准确计算的逆向运动学模型以得出机械臂各个关节连杆的旋转角度,并通过该旋转角度控制机械臂以预设轨迹进行喷涂,以在脱离人工控制的情况下实现对隧道全面的快速的自动喷涂。
-
公开(公告)号:CN111821262B
公开(公告)日:2022-07-08
申请号:CN202010738666.2
申请日:2020-07-28
Applicant: 中南林业科技大学
IPC: A61K9/107 , A61K47/34 , A61K41/00 , A61K31/192 , A61K31/337 , A61K31/704
Abstract: 本发明提供一种光热响应改性木质素自组装载药纳米胶束的制备方法,以木质素为基体,将基体进行马来酰化得到马来酰化木质素,再将马来酰化木质素加入N‑异丙基丙烯酰胺、N,N‑二甲基丙烯酰胺及引发剂进行反应得到马来酰化木质素接枝N‑异丙基丙烯酰胺‑N,N‑二甲基丙烯酰胺共聚物,接着将马来酰化木质素接枝N‑异丙基丙烯酰胺‑N,N‑二甲基丙烯酰胺共聚物和IR825进行键合,制备IR825‑马来酰化木质素‑g‑N‑异丙基丙烯酰胺‑N,N‑二甲基丙烯酰胺(IR825‑MAL‑g‑NIPAM‑DMAA)共聚物,最后制备成载药纳米胶束,使得该木质素基载药纳米胶束具有通过光热控制药物释放的能力。
-
公开(公告)号:CN113694900A
公开(公告)日:2021-11-26
申请号:CN202010441344.1
申请日:2020-05-22
Applicant: 中南林业科技大学
IPC: B01J20/26 , B01J20/30 , C02F1/28 , C02F101/22
Abstract: 本发明公开了一种木质素离子印迹复合物及其制备方法和应用。本发明的木质素离子印记复合物是以胺化改性木质素磺酸钠为基材、4‑乙烯基吡啶为功能单体、六价铬为模板离子、乙二醇二甲基丙烯酸酯为交联剂、偶氮二异丁腈为引发剂制备得到。其制备方法主要是将胺化改性木质素磺酸钠和4‑乙烯基吡啶置于丙酮溶液中进行共混交联,并通过引入离子印迹技术,使复合材料具有特定的六价铬离子(Cr6+)识别位点,有效增大其对六价铬离子的选择性吸附能力。本发明的木质素离子印迹复合物具有对六价铬离子的选择性高、吸附量大、稳定性好、可重复利用等优点,既拓展了木质素的应用领域,同时也能够满足实际应用的需求。
-
公开(公告)号:CN113174770A
公开(公告)日:2021-07-27
申请号:CN202110463997.4
申请日:2021-04-27
Applicant: 中南林业科技大学
Abstract: 本发明公开了一种渗透剂协同磷酸浸润耦合蒸汽爆破预处理杨木纤维的方法,包括如下步骤:S1、将杨木纤维原料粉碎,过筛,得到杨木屑;S2、将渗透剂加入浓度为2.0w%的磷酸溶液中,得到混合浸渍液,将步骤S1所得杨木屑加入混合浸渍液中,混合均匀并浸渍,得到混合物料;所述渗透剂为环氧乙烷与高级脂肪醇的缩合物,渗透剂在混合浸渍液中的体积浓度为0.5v%~3.0v%;S3、将步骤S2所得混合物料进行增压爆破;S4、爆破结束后,收集残渣和爆破浸出液,完成杨木纤维的预处理。本发明的方法具有操作简易、成本低廉、效率高等优点,实现了杨木纤维中半纤维素大量降解,使杨木结构疏松、表面积增大,有利于后续的酶解发酵产乙醇。
-
-
-
-
-
-
-
-
-