基于重要点双重评价因子时间序列趋势特征提取方法

    公开(公告)号:CN108804731A

    公开(公告)日:2018-11-13

    申请号:CN201710818994.1

    申请日:2017-09-12

    Applicant: 中南大学

    CPC classification number: G06N3/006

    Abstract: 本发明公开了一种基于重要点双重评价因子的时间序列趋势特征提取方法,以时间序列分段线性表示为基础,并定义重要点作为时间序列分段点的备选集,计算重要点距离因子和趋势因子,用距离因子度量其相对差异程度,用趋势因子在全局上度量其对整体趋势的影响程度,用综合评价模型评价每个重要点对整体趋势的重要程度来选取分段点,最后将相邻分段点连接得到时间序列的分段趋势表示。本发明提出了时间序列重要点距离因子的概念,并将两种评价因子相结合对时间序列重要点进行评价,克服了现有分段线性化方法评价函数单一和具有局部性的缺点,可以有效削弱噪声干扰,保留时间序列变化趋势特征,处理速度快,在分段数相同的情况下提取精度比现有方法高。

    基于重要点双重评价因子时间序列趋势特征提取方法

    公开(公告)号:CN108804731B

    公开(公告)日:2021-08-13

    申请号:CN201710818994.1

    申请日:2017-09-12

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于重要点双重评价因子的时间序列趋势特征提取方法,以时间序列分段线性表示为基础,并定义重要点作为时间序列分段点的备选集,计算重要点距离因子和趋势因子,用距离因子度量其相对差异程度,用趋势因子在全局上度量其对整体趋势的影响程度,用综合评价模型评价每个重要点对整体趋势的重要程度来选取分段点,最后将相邻分段点连接得到时间序列的分段趋势表示。本发明提出了时间序列重要点距离因子的概念,并将两种评价因子相结合对时间序列重要点进行评价,克服了现有分段线性化方法评价函数单一和具有局部性的缺点,可以有效削弱噪声干扰,保留时间序列变化趋势特征,处理速度快,在分段数相同的情况下提取精度比现有方法高。

Patent Agency Ranking