一种数据驱动的蜂窝基站动态管理方法与系统

    公开(公告)号:CN116390165B

    公开(公告)日:2023-11-14

    申请号:CN202310224248.5

    申请日:2023-03-09

    Applicant: 中南大学

    Abstract: 本发明公开了一种数据驱动的蜂窝基站动态管理方法与系统,本方法获取包含射频拉远头和基带处理单元的蜂窝基站数据集,并从蜂窝基站数据集中获得射频拉远头的表示特征;根据射频拉远头的表示特征构建射频拉远头的流行度指标;采用带约束条件的聚类方法对射频拉远头的流行度指标进行分类,获得射频拉远头的分类结果;根据分类结果建立基带处理单元的总优化目标;根据基带处理单元的总优化目标建立马尔可夫决策过程模型;采用异步优势动作评价方法对马尔可夫决策过程模型进行网络训练,获得射频拉远头到基带处理单元的连接映射结果;根据连接映射结果动态管理蜂窝基站。本发明能提高基带处理单元的利用率,减少能耗,使用户连接负载更均衡。

    一种数据驱动的互联网卡用户价值分类方法、设备及介质

    公开(公告)号:CN115563555B

    公开(公告)日:2023-03-14

    申请号:CN202211513076.5

    申请日:2022-11-30

    Applicant: 中南大学

    Abstract: 本发明公开一种数据驱动的互联网卡用户价值分类方法、设备及介质,本方法首先从互联网卡用户的网卡使用数据中提取出用于表征用户价值状况的特征,然后将特征组成待分类数据集,对待分类数据集进行聚类,将聚类结果输入至预设的机器学习模型中,得到特征重要性向量,最后利用特征重要性向量判断用户的价值等级,本方法是通过大数据分析和挖掘技术从大规模群体用户数据中捕捉用户行为反应的潜在用户价值信息,从而利用潜在用户价值信息实现用户的价值等级划分。本方法得到的分类结果具有的明确的目的性和高可靠性,能为企业决策行为提供合理的大数据支持,而且待分类数据集中所筛选的特征可根据不同的应用场景进行差异化选取,很高的普适性。

    一种交通拥堵预测方法、系统、设备及存储介质

    公开(公告)号:CN115620524A

    公开(公告)日:2023-01-17

    申请号:CN202211612325.6

    申请日:2022-12-15

    Applicant: 中南大学

    Abstract: 本发明公开了一种交通拥堵预测方法、系统、设备及存储介质,本方法通过获取多源异构数据集,获取交通事件数据、拥堵事件数据和站点流量数据;采用卷积神经网络提取拥堵事件数据、交通事件数据和待预测的交通拥堵之间的空间相关性特征;通过特征提取网络提取站点流量处理数据与拥堵的时间依赖关系特征;获取除交通事件数据、拥堵事件数据和站点流量数据之外的多种因素数据,并对多种因素数据进行多分类处理和独热编码处理,获得多种因素特征;将空间相关性特征、时间依赖关系特征和多种因素特征进行拼接,获得时空联合特征,并将时空联合特征输入至多层感知机模型中,获得待预测的交通拥堵的预测结果。本发明能够提高交通拥堵预测的精确度。

    APP流行度预测模型构建方法、预测方法、设备及存储介质

    公开(公告)号:CN115604130B

    公开(公告)日:2023-03-14

    申请号:CN202211523044.3

    申请日:2022-12-01

    Applicant: 中南大学

    Abstract: 本发明公开了一种APP流行度预测模型构建方法、预测方法、设备及存储介质,所述构建方法包括获取APP流行度分布数据,所述APP流行度分布数据包括使用待分析APP的用户数量、使用待分析APP消耗的流量以及访问待分析APP的次数;根据所述APP流行度分布数据构建APP流行度预测模型,其中所述APP流行度预测模型用于计算每个待分析APP的预测比例,进而计算待分析APP的流行度以及所有待分析APP的流行度分布轨迹。相对于传统的使用APP应用市场内数据或指标来评价或分析APP流行度,本发明具有更高的真实性,提高了APP流行度分析结果的准确性。

    APP流行度预测模型构建方法、预测方法、设备及存储介质

    公开(公告)号:CN115604130A

    公开(公告)日:2023-01-13

    申请号:CN202211523044.3

    申请日:2022-12-01

    Abstract: 本发明公开了一种APP流行度预测模型构建方法、预测方法、设备及存储介质,所述构建方法包括获取APP流行度分布数据,所述APP流行度分布数据包括使用待分析APP的用户数量、使用待分析APP消耗的流量以及访问待分析APP的次数;根据所述APP流行度分布数据构建APP流行度预测模型,其中所述APP流行度预测模型用于计算每个待分析APP的预测比例,进而计算待分析APP的流行度以及所有待分析APP的流行度分布轨迹。相对于传统的使用APP应用市场内数据或指标来评价或分析APP流行度,本发明具有更高的真实性,提高了APP流行度分析结果的准确性。

    一种数据驱动的蜂窝基站动态管理方法与系统

    公开(公告)号:CN116390165A

    公开(公告)日:2023-07-04

    申请号:CN202310224248.5

    申请日:2023-03-09

    Applicant: 中南大学

    Abstract: 本发明公开了一种数据驱动的蜂窝基站动态管理方法与系统,本方法获取包含射频拉远头和基带处理单元的蜂窝基站数据集,并从蜂窝基站数据集中获得射频拉远头的表示特征;根据射频拉远头的表示特征构建射频拉远头的流行度指标;采用带约束条件的聚类方法对射频拉远头的流行度指标进行分类,获得射频拉远头的分类结果;根据分类结果建立基带处理单元的总优化目标;根据基带处理单元的总优化目标建立马尔可夫决策过程模型;采用异步优势动作评价方法对马尔可夫决策过程模型进行网络训练,获得射频拉远头到基带处理单元的连接映射结果;根据连接映射结果动态管理蜂窝基站。本发明能提高基带处理单元的利用率,减少能耗,使用户连接负载更均衡。

    网络指纹识别模型训练方法、识别方法、设备及存储介质

    公开(公告)号:CN115604027A

    公开(公告)日:2023-01-13

    申请号:CN202211496327.3

    申请日:2022-11-28

    Abstract: 本发明公开了一种网络指纹识别模型训练方法、识别方法、设备及存储介质,该训练方法包括获取蜂窝网络用户在第一时间段内的流量使用数据集;确定每个用户在每个第二时间段内的轨迹特征序列;计算每个用户与其他用户的轨迹相似度,确定每个用户的最相邻用户,并由每个用户的最相邻用户生成该用户的候选用户序列;根据每个用户的N1个轨迹特征序列及其候选用户序列生成该用户的正样本和负样本;构建用户网络指纹识别模型,利用训练样本集中的正样本和负样本对所述用户网络指纹识别模型进行训练,得到目标用户网络指纹识别模型。本发明能够提高复杂蜂窝场景下用户网络指纹的识别精度。

    一种数据驱动的互联网卡用户价值分类方法、设备及介质

    公开(公告)号:CN115563555A

    公开(公告)日:2023-01-03

    申请号:CN202211513076.5

    申请日:2022-11-30

    Applicant: 中南大学

    Abstract: 本发明公开一种数据驱动的互联网卡用户价值分类方法、设备及介质,本方法首先从互联网卡用户的网卡使用数据中提取出用于表征用户价值状况的特征,然后将特征组成待分类数据集,对待分类数据集进行聚类,将聚类结果输入至预设的机器学习模型中,得到特征重要性向量,最后利用特征重要性向量判断用户的价值等级,本方法是通过大数据分析和挖掘技术从大规模群体用户数据中捕捉用户行为反应的潜在用户价值信息,从而利用潜在用户价值信息实现用户的价值等级划分。本方法得到的分类结果具有的明确的目的性和高可靠性,能为企业决策行为提供合理的大数据支持,而且待分类数据集中所筛选的特征可根据不同的应用场景进行差异化选取,很高的普适性。

    一种交通拥堵预测方法、系统、设备及存储介质

    公开(公告)号:CN115620524B

    公开(公告)日:2023-03-28

    申请号:CN202211612325.6

    申请日:2022-12-15

    Applicant: 中南大学

    Abstract: 本发明公开了一种交通拥堵预测方法、系统、设备及存储介质,本方法通过获取多源异构数据集,获取交通事件数据、拥堵事件数据和站点流量数据;采用卷积神经网络提取拥堵事件数据、交通事件数据和待预测的交通拥堵之间的空间相关性特征;通过特征提取网络提取站点流量处理数据与拥堵的时间依赖关系特征;获取除交通事件数据、拥堵事件数据和站点流量数据之外的多种因素数据,并对多种因素数据进行多分类处理和独热编码处理,获得多种因素特征;将空间相关性特征、时间依赖关系特征和多种因素特征进行拼接,获得时空联合特征,并将时空联合特征输入至多层感知机模型中,获得待预测的交通拥堵的预测结果。本发明能够提高交通拥堵预测的精确度。

    网络指纹识别模型训练方法、识别方法、设备及存储介质

    公开(公告)号:CN115604027B

    公开(公告)日:2023-03-14

    申请号:CN202211496327.3

    申请日:2022-11-28

    Applicant: 中南大学

    Abstract: 本发明公开了一种网络指纹识别模型训练方法、识别方法、设备及存储介质,该训练方法包括获取蜂窝网络用户在第一时间段内的流量使用数据集;确定每个用户在每个第二时间段内的轨迹特征序列;计算每个用户与其他用户的轨迹相似度,确定每个用户的最相邻用户,并由每个用户的最相邻用户生成该用户的候选用户序列;根据每个用户的N1个轨迹特征序列及其候选用户序列生成该用户的正样本和负样本;构建用户网络指纹识别模型,利用训练样本集中的正样本和负样本对所述用户网络指纹识别模型进行训练,得到目标用户网络指纹识别模型。本发明能够提高复杂蜂窝场景下用户网络指纹的识别精度。

Patent Agency Ranking