深度哈希方法
    1.
    发明授权

    公开(公告)号:CN115761263B

    公开(公告)日:2023-07-25

    申请号:CN202211581109.X

    申请日:2022-12-09

    Applicant: 中南大学

    Abstract: 本申请适用于图像检索技术领域,提供了一种深度哈希方法,该方法通过提取图像数据的局部特征数据和全局表示数据;对局部特征数据和全局表示数据进行融合,得到融合特征数据;对多个融合特征进行聚类,得到多个簇;将最大簇融合特征的数量作为所有超边的最大阶数,根据所有阶超边的权重构建总关联矩阵;根据总关联矩阵构建融合特征数据超图;利用超图卷积神经网络对融合特征数据超图进行处理,得到融合特征数据对应的优化特征数据;对优化特征数据进行处理,得到图像数据的初始哈希码;利用初始哈希码和损失函数构建模型优化函数,并根据模型优化函数得到最终哈希码。本申请可以提高深度哈希方法检索的准确率。

    基于图卷积网络的深度哈希方法及交通数据检索方法

    公开(公告)号:CN115878823B

    公开(公告)日:2023-04-28

    申请号:CN202310195620.4

    申请日:2023-03-03

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于图卷积网络的深度哈希方法,包括获取训练图像;对图像数据进行数据增强;构建视觉转换器模块;将视觉转换器模块的输出数据输入到图卷积网络中进行相关性优化;将图卷积网络的输出图像经过全连接层和激活函数映射得到哈希码;构建综合损失函数优化哈希过程;根据最终的优化结果完成实际的深度哈希过程。本发明还公开了一种包括所述基于图卷积网络的深度哈希方法的交通数据检索方法。本发明保证低维汉明空间与原始图像高维空间一致的相关性关系,生成更加高效、紧凑的二进制哈希码,提高大规模图片检索的有效性,而且可靠性高、有效性好且简单方便。

    基于图卷积网络的深度哈希方法及交通数据检索方法

    公开(公告)号:CN115878823A

    公开(公告)日:2023-03-31

    申请号:CN202310195620.4

    申请日:2023-03-03

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于图卷积网络的深度哈希方法,包括获取训练图像;对图像数据进行数据增强;构建视觉转换器模块;将视觉转换器模块的输出数据输入到图卷积网络中进行相关性优化;将图卷积网络的输出图像经过全连接层和激活函数映射得到哈希码;构建综合损失函数优化哈希过程;根据最终的优化结果完成实际的深度哈希过程。本发明还公开了一种包括所述基于图卷积网络的深度哈希方法的交通数据检索方法。本发明保证低维汉明空间与原始图像高维空间一致的相关性关系,生成更加高效、紧凑的二进制哈希码,提高大规模图片检索的有效性,而且可靠性高、有效性好且简单方便。

    深度哈希方法
    4.
    发明公开

    公开(公告)号:CN115761263A

    公开(公告)日:2023-03-07

    申请号:CN202211581109.X

    申请日:2022-12-09

    Applicant: 中南大学

    Abstract: 本申请适用于图像检索技术领域,提供了一种深度哈希方法,该方法通过提取图像数据的局部特征数据和全局表示数据;对局部特征数据和全局表示数据进行融合,得到融合特征数据;对多个融合特征进行聚类,得到多个簇;将最大簇融合特征的数量作为所有超边的最大阶数,根据所有阶超边的权重构建总关联矩阵;根据总关联矩阵构建融合特征数据超图;利用超图卷积神经网络对融合特征数据超图进行处理,得到融合特征数据对应的优化特征数据;对优化特征数据进行处理,得到图像数据的初始哈希码;利用初始哈希码和损失函数构建模型优化函数,并根据模型优化函数得到最终哈希码。本申请可以提高深度哈希方法检索的准确率。

Patent Agency Ranking