-
公开(公告)号:CN111582337A
公开(公告)日:2020-08-25
申请号:CN202010331181.1
申请日:2020-04-24
Applicant: 东南大学
IPC: G06K9/62 , G06K9/46 , G06N3/04 , G06N3/08 , G06F16/583
Abstract: 针对草莓栽培智能监测及采摘状态识别和品质评估的需求,本发明提供一种基于小样本细粒度图像分析的草莓畸形状态检测方法,包括基于RGB摄像头草莓图像数据集采集、草莓目标检测及标记、图像划分及预处理、将小样本草莓图像细微特征获取、草莓图像细粒度畸变级别的训练分类。该细粒度级别的草莓图像识别方法,与传统的作物生长监测分类方法相比,可以大幅降低训练识别所需的图像数量和标记类型,完成对具有小样本草莓图像通过前向推理得出辨别性语义细微特征样本集和训练查询集图像的特征信息,从而完成草莓目标检测、草莓畸变级别判断、植株病况分析、生长建模及预测。