认知无线电中基于SOM神经网络的恶意用户判别方法

    公开(公告)号:CN107592635A

    公开(公告)日:2018-01-16

    申请号:CN201710791223.8

    申请日:2017-09-05

    Applicant: 东南大学

    Abstract: 本发明公开了一种认知无线电中基于自组织映射神经网络的恶意用户判别方法,本发明利用自组织映射(简称SOM)神经网络学习输入能量矩阵的分布特征,并根据学习结果对输入量进行有效的分类。首先引入“可疑度”的概念,其大小根据每次训练后每种类别所包含的次级用户的个数进行分配。为了消除传统的SOM神经网络的缺陷,本发明进一步提出了“平均可疑度”的概念。具体步骤包括:获得能量矩阵,利用SOM神经网络算法对能量矩阵进行训练得到分类矩阵,计算每个次级用户的“可疑度”,构造索引矩阵并重复训练过程,并将每次得到的“可疑度”取平均值,即“平均可疑度”,并利用“平均可疑度”对次级用户进行分类,识别出恶意用户或是正常用户。

    一种认知无线电多用户协作频谱感知方法

    公开(公告)号:CN107370521B

    公开(公告)日:2020-07-31

    申请号:CN201710812826.1

    申请日:2017-09-11

    Applicant: 东南大学

    Abstract: 本发明涉及认知无线电技术领域,公开了一种认知无线电多用户协作频谱感知方法,该方法包括四个过程:(1)数据准备:各认知用户分别计算接收信号的能量、频谱宽度和信噪比;(2)本地判决:各认知用户通过对比门限值与对应统计量的大小进行本地判决;(3)判决结果传输:本地判决结束之后,将判决结果和自身参数发送至融合中心;(4)最终判决:融合中心根据周围网络情况设置门限值,并将各个认知用户发来的数据进行两轮加权融合与判决,并根据最终结果来判定授权用户是否存在。本方法考虑了无线环境中噪声的影响以及数据融合过程中各个认知用户信噪比的不同,对提高频谱利用率,缓解频谱匮乏的现状提供了解决思路。

    一种认知无线电多用户协作频谱感知方法

    公开(公告)号:CN107370521A

    公开(公告)日:2017-11-21

    申请号:CN201710812826.1

    申请日:2017-09-11

    Applicant: 东南大学

    Abstract: 本发明涉及认知无线电技术领域,公开了一种认知无线电多用户协作频谱感知方法,该方法包括四个过程:(1)数据准备:各认知用户分别计算接收信号的能量、频谱宽度和信噪比;(2)本地判决:各认知用户通过对比门限值与对应统计量的大小进行本地判决;(3)判决结果传输:本地判决结束之后,将判决结果和自身参数发送至融合中心;(4)最终判决:融合中心根据周围网络情况设置门限值,并将各个认知用户发来的数据进行两轮加权融合与判决,并根据最终结果来判定授权用户是否存在。本方法考虑了无线环境中噪声的影响以及数据融合过程中各个认知用户信噪比的不同,对提高频谱利用率,缓解频谱匮乏的现状提供了解决思路。

    认知无线电中基于SOM神经网络的恶意用户判别方法

    公开(公告)号:CN107592635B

    公开(公告)日:2019-10-11

    申请号:CN201710791223.8

    申请日:2017-09-05

    Applicant: 东南大学

    Abstract: 本发明公开了一种认知无线电中基于自组织映射神经网络的恶意用户判别方法,本发明利用自组织映射(简称SOM)神经网络学习输入能量矩阵的分布特征,并根据学习结果对输入量进行有效的分类。首先引入“可疑度”的概念,其大小根据每次训练后每种类别所包含的次级用户的个数进行分配。为了消除传统的SOM神经网络的缺陷,本发明进一步提出了“平均可疑度”的概念。具体步骤包括:获得能量矩阵,利用SOM神经网络算法对能量矩阵进行训练得到分类矩阵,计算每个次级用户的“可疑度”,构造索引矩阵并重复训练过程,并将每次得到的“可疑度”取平均值,即“平均可疑度”,并利用“平均可疑度”对次级用户进行分类,识别出恶意用户或是正常用户。

Patent Agency Ranking