认知无线电中基于SOM神经网络的恶意用户判别方法

    公开(公告)号:CN107592635A

    公开(公告)日:2018-01-16

    申请号:CN201710791223.8

    申请日:2017-09-05

    Applicant: 东南大学

    Abstract: 本发明公开了一种认知无线电中基于自组织映射神经网络的恶意用户判别方法,本发明利用自组织映射(简称SOM)神经网络学习输入能量矩阵的分布特征,并根据学习结果对输入量进行有效的分类。首先引入“可疑度”的概念,其大小根据每次训练后每种类别所包含的次级用户的个数进行分配。为了消除传统的SOM神经网络的缺陷,本发明进一步提出了“平均可疑度”的概念。具体步骤包括:获得能量矩阵,利用SOM神经网络算法对能量矩阵进行训练得到分类矩阵,计算每个次级用户的“可疑度”,构造索引矩阵并重复训练过程,并将每次得到的“可疑度”取平均值,即“平均可疑度”,并利用“平均可疑度”对次级用户进行分类,识别出恶意用户或是正常用户。

    一种MEC中无线资源和云资源的联合分配方法

    公开(公告)号:CN107249218A

    公开(公告)日:2017-10-13

    申请号:CN201710413708.3

    申请日:2017-06-05

    Applicant: 东南大学

    Abstract: 本发明公开了一种MEC中无线资源和云资源的联合分配方法,包括:(1)MEC中的终端发起任务卸载请求,并建立终端的任务卸载代价函数;(2)异构网络的各个接入点获取覆盖区域内各个终端任务卸载代价函数,并将终端的任务卸载请求和网络的信道信息发送至朵云;(3)朵云基于合作博弈进行无线资源和云资源联合分配,利用KKT条件得到纳什均衡解,并将博弈纳什均衡解发送至终端;(4)终端根据纳什均衡解向朵云和接入点进行计算资源和无线资源请求;(5)朵云和接入点根据终端请求分配计算资源和无线资源。本发明基于合作博弈,充分利用朵云中有限的计算资源,在以最小化所有终端任务卸载代价为目标的同时,保证各终端任务的实时性,满足各移动终端的任务卸载需求。

    认知无线电中基于SOM神经网络的恶意用户判别方法

    公开(公告)号:CN107592635B

    公开(公告)日:2019-10-11

    申请号:CN201710791223.8

    申请日:2017-09-05

    Applicant: 东南大学

    Abstract: 本发明公开了一种认知无线电中基于自组织映射神经网络的恶意用户判别方法,本发明利用自组织映射(简称SOM)神经网络学习输入能量矩阵的分布特征,并根据学习结果对输入量进行有效的分类。首先引入“可疑度”的概念,其大小根据每次训练后每种类别所包含的次级用户的个数进行分配。为了消除传统的SOM神经网络的缺陷,本发明进一步提出了“平均可疑度”的概念。具体步骤包括:获得能量矩阵,利用SOM神经网络算法对能量矩阵进行训练得到分类矩阵,计算每个次级用户的“可疑度”,构造索引矩阵并重复训练过程,并将每次得到的“可疑度”取平均值,即“平均可疑度”,并利用“平均可疑度”对次级用户进行分类,识别出恶意用户或是正常用户。

    移动边缘云计算系统中基于演进博弈的动态资源分配方法

    公开(公告)号:CN107465748A

    公开(公告)日:2017-12-12

    申请号:CN201710709945.4

    申请日:2017-08-18

    Applicant: 东南大学

    Abstract: 本发明公开了一种移动边缘云计算系统中基于演进博弈的动态资源分配方法,包括:(1)根据网络覆盖情况将网络分成若干个区域,每个区域可接入服务点有所不同,网络内有一个集中控制器;(2)同一个区域内具有任务卸载需求的终端形成一个种群,种群内的终端建立任务卸载代价函数;(3)每个种群的所有终端在SP选择策略集内随机选择可接入SP;网络内各个种群内部建立演进博弈;(4)各个种群的终端计算任务卸载代价并将SP选择策略和代价信息发送至控制器;(5)种群根据动态复制进行SP选择策略更新;(6)动态复制达到演进均衡。本发明基于演进博弈,充分利用SP的计算资源和无线资源,在以种群内所有终端任务卸载代价都相等为目标的同时,满足各移动终端的任务卸载需求。

    一种MEC中无线资源和云资源的联合分配方法

    公开(公告)号:CN107249218B

    公开(公告)日:2020-08-25

    申请号:CN201710413708.3

    申请日:2017-06-05

    Applicant: 东南大学

    Abstract: 本发明公开了一种MEC中无线资源和云资源的联合分配方法,包括:(1)MEC中的终端发起任务卸载请求,并建立终端的任务卸载代价函数;(2)异构网络的各个接入点获取覆盖区域内各个终端任务卸载代价函数,并将终端的任务卸载请求和网络的信道信息发送至朵云;(3)朵云基于合作博弈进行无线资源和云资源联合分配,利用KKT条件得到纳什均衡解,并将博弈纳什均衡解发送至终端;(4)终端根据纳什均衡解向朵云和接入点进行计算资源和无线资源请求;(5)朵云和接入点根据终端请求分配计算资源和无线资源。本发明基于合作博弈,充分利用朵云中有限的计算资源,在以最小化所有终端任务卸载代价为目标的同时,保证各终端任务的实时性,满足各移动终端的任务卸载需求。

    一种认知无线电多用户协作频谱感知方法

    公开(公告)号:CN107370521B

    公开(公告)日:2020-07-31

    申请号:CN201710812826.1

    申请日:2017-09-11

    Applicant: 东南大学

    Abstract: 本发明涉及认知无线电技术领域,公开了一种认知无线电多用户协作频谱感知方法,该方法包括四个过程:(1)数据准备:各认知用户分别计算接收信号的能量、频谱宽度和信噪比;(2)本地判决:各认知用户通过对比门限值与对应统计量的大小进行本地判决;(3)判决结果传输:本地判决结束之后,将判决结果和自身参数发送至融合中心;(4)最终判决:融合中心根据周围网络情况设置门限值,并将各个认知用户发来的数据进行两轮加权融合与判决,并根据最终结果来判定授权用户是否存在。本方法考虑了无线环境中噪声的影响以及数据融合过程中各个认知用户信噪比的不同,对提高频谱利用率,缓解频谱匮乏的现状提供了解决思路。

    移动边缘云计算系统中基于演进博弈的动态资源分配方法

    公开(公告)号:CN107465748B

    公开(公告)日:2020-07-31

    申请号:CN201710709945.4

    申请日:2017-08-18

    Applicant: 东南大学

    Abstract: 本发明公开了一种移动边缘云计算系统中基于演进博弈的动态资源分配方法,包括:(1)根据网络覆盖情况将网络分成若干个区域,每个区域可接入服务点有所不同,网络内有一个集中控制器;(2)同一个区域内具有任务卸载需求的终端形成一个种群,种群内的终端建立任务卸载代价函数;(3)每个种群的所有终端在SP选择策略集内随机选择可接入SP;网络内各个种群内部建立演进博弈;(4)各个种群的终端计算任务卸载代价并将SP选择策略和代价信息发送至控制器;(5)种群根据动态复制进行SP选择策略更新;(6)动态复制达到演进均衡。本发明基于演进博弈,充分利用SP的计算资源和无线资源,在以种群内所有终端任务卸载代价都相等为目标的同时,满足各移动终端的任务卸载需求。

    一种认知无线电多用户协作频谱感知方法

    公开(公告)号:CN107370521A

    公开(公告)日:2017-11-21

    申请号:CN201710812826.1

    申请日:2017-09-11

    Applicant: 东南大学

    Abstract: 本发明涉及认知无线电技术领域,公开了一种认知无线电多用户协作频谱感知方法,该方法包括四个过程:(1)数据准备:各认知用户分别计算接收信号的能量、频谱宽度和信噪比;(2)本地判决:各认知用户通过对比门限值与对应统计量的大小进行本地判决;(3)判决结果传输:本地判决结束之后,将判决结果和自身参数发送至融合中心;(4)最终判决:融合中心根据周围网络情况设置门限值,并将各个认知用户发来的数据进行两轮加权融合与判决,并根据最终结果来判定授权用户是否存在。本方法考虑了无线环境中噪声的影响以及数据融合过程中各个认知用户信噪比的不同,对提高频谱利用率,缓解频谱匮乏的现状提供了解决思路。

Patent Agency Ranking