多个个体车辆使用行为短时预测的深度学习方法

    公开(公告)号:CN110210664A

    公开(公告)日:2019-09-06

    申请号:CN201910457968.X

    申请日:2019-05-29

    Applicant: 东南大学

    Abstract: 一种考虑时间依赖性以及驾驶员属性异质性的用车行为预测的深度学习方法,通过对私家车司机提供的个人属性信息以及GPS轨迹数据的收集和整理,获得驾驶员短时的用车时间的来对汽车的使用行为进行预测。通过数据处理获得驾驶员是否用车以及用车的时间的来表示驾驶员的用车行为,并将此数据转化为二通道图片数据结构放入本发明的用于多个体的驾驶行为预测的深度学习方法中。本发明的深度学习方法可以从以时间序列堆叠的一堆二通道图片中考虑驾驶员用车行为的对于临近时间以及远期时间的时间依赖性,同时此发明不仅仅可以同时训练多个个体,还可以考虑到多个个体因为个人属性的不同而产生的用车行为模式的差异性。

    一种实时预测驾驶员用车行为模式变化的方法

    公开(公告)号:CN114398530B

    公开(公告)日:2024-08-23

    申请号:CN202111623992.X

    申请日:2021-12-28

    Applicant: 东南大学

    Abstract: 本申请涉及一种实时预测驾驶员用车行为模式变化的方法。该方法包括:实时获取驾驶者的个人出行的历史数据并进行预处理,历史数据为驾驶者在以前的出行中车辆的使用时间以及出行的空间位置;将历史数据规整后,将出行地图划分为网格并对网格中每一个格子给予索引作为空间数据,将时间序列数据按日划分,每日统计个人车辆使用时间并以此作为时间数据,获得统计的时间序列数据;将时间序列数据输入到预先构建的广义似然比模型中,对当前周期的车辆使用模式进行分析,获得驾驶员当前周期内的车辆使用模式变化信息。以概率分布形式推断,考虑了时间依赖性以及个人属性的异质性的多个个体的私家车使用行为,有效地提升个人用车行为模式推断的精确率。

    多个个体车辆使用行为短时预测的深度学习方法

    公开(公告)号:CN110210664B

    公开(公告)日:2020-07-24

    申请号:CN201910457968.X

    申请日:2019-05-29

    Applicant: 东南大学

    Abstract: 一种考虑时间依赖性以及驾驶员属性异质性的用车行为预测的深度学习方法,通过对私家车司机提供的个人属性信息以及GPS轨迹数据的收集和整理,获得驾驶员短时的用车时间的来对汽车的使用行为进行预测。通过数据处理获得驾驶员是否用车以及用车的时间的来表示驾驶员的用车行为,并将此数据转化为二通道图片数据结构放入本发明的用于多个体的驾驶行为预测的深度学习方法中。本发明的深度学习方法可以从以时间序列堆叠的一堆二通道图片中考虑驾驶员用车行为的对于临近时间以及远期时间的时间依赖性,同时此发明不仅仅可以同时训练多个个体,还可以考虑到多个个体因为个人属性的不同而产生的用车行为模式的差异性。

    一种实时预测驾驶员用车行为模式变化的方法

    公开(公告)号:CN114398530A

    公开(公告)日:2022-04-26

    申请号:CN202111623992.X

    申请日:2021-12-28

    Applicant: 东南大学

    Abstract: 本申请涉及一种实时预测驾驶员用车行为模式变化的方法。该方法包括:实时获取驾驶者的个人出行的历史数据并进行预处理,历史数据为驾驶者在以前的出行中车辆的使用时间以及出行的空间位置;将历史数据规整后,将出行地图划分为网格并对网格中每一个格子给予索引作为空间数据,将时间序列数据按日划分,每日统计个人车辆使用时间并以此作为时间数据,获得统计的时间序列数据;将时间序列数据输入到预先构建的广义似然比模型中,对当前周期的车辆使用模式进行分析,获得驾驶员当前周期内的车辆使用模式变化信息。以概率分布形式推断,考虑了时间依赖性以及个人属性的异质性的多个个体的私家车使用行为,有效地提升个人用车行为模式推断的精确率。

Patent Agency Ranking