-
公开(公告)号:CN118797980B
公开(公告)日:2025-02-14
申请号:CN202410449534.6
申请日:2024-08-06
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G06F30/23 , G06F17/13 , G06F30/27 , G06N3/0442 , G06N3/045 , G06N3/0475 , G06N3/094 , G06F113/08 , G06F119/14
Abstract: 一种面向类不平衡数据场景的数模双驱动油气管网故障诊断方法及系统,涉及油气管网的故障诊断领域,旨在解决当前智能故障诊断模型在处理油田类不平衡数据集时所面临的过拟合问题,以及降低误报和漏报的风险。主要步骤如下:深入理解油气在管网中运动时负压波的传播和衰减机理,建立反映管网运行状态的负压波衰减物理模型;基于长短时记忆网络构建适用于处理时间序列数据的深度生成对抗模型;设计合理的串‑并联机制融合物理模型以及数据驱动模型,构建混合生成对抗模型;使用训练好的混合生成对抗模型生成管网故障数据,平衡原始训练集;训练智能故障诊断模型,实现管道故障类型识别。本发明同时考虑和整合来自物理模型的先验知识和数据驱动模型的学习能力,与单纯的数据驱动模型相比,物理模型所含的管网先验知识能够缩小参数空间搜索域,减少估计参数量,提高深度生成模型的可解释性与泛化性能,同时提升生成故障数据的物理合理性与特征可区分性,从而有效克服类不平衡数据集对诊断模型性能的负面影响,进而提升管道智能故障诊断的准确性。
-
公开(公告)号:CN118797980A
公开(公告)日:2024-10-18
申请号:CN202410449534.6
申请日:2024-08-06
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G06F30/23 , G06F17/13 , G06F30/27 , G06N3/0442 , G06N3/045 , G06N3/0475 , G06N3/094 , G06F113/08 , G06F119/14
Abstract: 一种面向类不平衡数据场景的数模双驱动油气管网故障诊断方法及系统,涉及油气管网的故障诊断领域,旨在解决当前智能故障诊断模型在处理油田类不平衡数据集时所面临的过拟合问题,以及降低误报和漏报的风险。主要步骤如下:深入理解油气在管网中运动时负压波的传播和衰减机理,建立反映管网运行状态的负压波衰减物理模型;基于长短时记忆网络构建适用于处理时间序列数据的深度生成对抗模型;设计合理的串‑并联机制融合物理模型以及数据驱动模型,构建混合生成对抗模型;使用训练好的混合生成对抗模型生成管网故障数据,平衡原始训练集;训练智能故障诊断模型,实现管道故障类型识别。本发明同时考虑和整合来自物理模型的先验知识和数据驱动模型的学习能力,与单纯的数据驱动模型相比,物理模型所含的管网先验知识能够缩小参数空间搜索域,减少估计参数量,提高深度生成模型的可解释性与泛化性能,同时提升生成故障数据的物理合理性与特征可区分性,从而有效克服类不平衡数据集对诊断模型性能的负面影响,进而提升管道智能故障诊断的准确性。
-