-
公开(公告)号:CN116987959A
公开(公告)日:2023-11-03
申请号:CN202210439991.8
申请日:2022-04-25
Applicant: 东北大学 , 南京钢铁股份有限公司
IPC: C22C38/02 , C22C38/06 , C22C38/42 , C22C38/44 , C22C38/50 , C22C38/58 , C21D1/18 , C21D6/00 , C21D8/02
Abstract: 本发明公开一种耐蚀高强韧中锰钢中厚板及其制备方法,采用Cr、Ni、Mo、Ti、Cu元素混合配比来补偿由于加入大量Mn元素而造成的电位下降;并且细化锈层晶粒,阻碍溶解氧向锈层内部的基体渗透,从而降低中锰钢的腐蚀速率;同时为防止过多合金元素的添加使得组织中生成较大的碳化物析出相,强烈地恶化材料的冲击性能,采用低温轧制的方法引入更多位错和畸变能,减少碳化物析出相的含量,提高冲击性能;本发明的有益效果:改善了中锰钢的腐蚀性能的同时,‑40℃冲击功≥110J,低温冲击功没有明显的下降;此外,本发明方法操作过程简单,容易实现工业化生产。
-
公开(公告)号:CN116984710A
公开(公告)日:2023-11-03
申请号:CN202210439974.4
申请日:2022-04-25
Applicant: 东北大学 , 南京钢铁股份有限公司
Abstract: 本发明专利提供了一种EH690‑ZM+E36异种钢中厚板焊接方法,采用适合本文涉及的异种钢焊接的自主研发的焊丝,采用气体保护焊接方法,通过调节焊接参数保证了焊接接头的力学性能的整体性的同时具备优异的低温冲击韧性;所述的EH690‑ZM+E36两种钢的组织分别为回火马氏体及细小稳定奥氏体和铁素体及珠光体;本发明的优点:充分考虑所涉及两种钢的成分和相变点设计焊丝成分和焊接工艺,使得焊接热处理后的焊接接头的性能优良:屈服强度447.7~542MPa,抗拉强度为602~617MPa,均高于E36母材性能,断后延伸率≥20%,断裂位置均在E36基材侧,焊缝、粗晶区及细晶区‑40℃冲击功≥69J,满足Q690E级钢的焊接接头低温冲击韧性要求。此外,本发明对推广中锰钢在海洋工程上的应用具有重要意义。
-
公开(公告)号:CN114855098A
公开(公告)日:2022-08-05
申请号:CN202210429563.7
申请日:2022-04-22
Applicant: 东北大学 , 南京钢铁股份有限公司
Abstract: 本发明属于金属材料技术领域,具体涉及一种工程机械用高强中锰钢及其制备方法。本发明的技术方案如下:一种工程机械用高强中锰钢,化学组份按重量百分比为:C:0.05~0.1%,Mn:4.5~7.0%,Si:0.6~1.0%,Al:0.05~0.3%,Cr:0.15~0.40%,Ni:0.10~0.20%,Mo:0.20~0.50%,Cu+B:0.15~0.55%,S:<0.006%,P:<0.01%,余量为Fe和其他不可避免的杂质。本发明提供的工程机械用高强中锰钢及其制备方法,调控原始奥氏体的特征,冷却过程的相变及马氏体组织的内部状态,在保证高强度的前提下实现钢板屈强比可控的短流程制备。
-
公开(公告)号:CN112560303B
公开(公告)日:2023-12-15
申请号:CN202011385946.6
申请日:2020-12-01
Applicant: 南京钢铁股份有限公司
IPC: G06F30/23 , G16C60/00 , G06F119/08
Abstract: 本发明公开了一种验证低温压力容器钢淬火制度的方法,属于金属热处理技术领域。该方法结合了有限元模拟、淬火试验以及热模拟试验,可以判断在加热阶段坯料心部温度达到目标温度所需时间,有效避免长时间加热造成的组织粗化,并结合淬火工艺窗口确定在现有制度下的晶粒尺寸大小及均匀性,进而优化淬火时间,保证最终组织满足要求。进而起到了减少研发周期,节能降本,提高产品合格率的作用。
-
公开(公告)号:CN115889720A
公开(公告)日:2023-04-04
申请号:CN202211162494.4
申请日:2022-09-23
Applicant: 南京钢铁股份有限公司
IPC: B22D11/20 , C22C38/02 , C22C38/06 , C22C38/20 , C22C38/22 , C22C38/24 , C22C38/26 , C22C38/28 , C22C38/38 , C22C38/42 , C22C38/44 , C22C38/46 , C22C38/48 , C22C38/50 , C22C38/58
Abstract: 本发明公开了一种基于方坯合金钢热装热送工艺。属于冶金领域的综合控制技术领域,具体步骤:1、热装热送铸坯连续性保障;2、热送过程及装炉均衡性保障;3、热装工艺制度及质量的保障性;本发明适应于钢种成分体系复杂的合金钢,是热装热送可热装钢种比例增加,提升热装效率;另外在提升热装效率的同时也考虑合金钢的热装质量的保障;形成一整套热装热送工艺操作要点,可为其他合金体系复杂的钢种热装实验服务;本发明制备工艺还有效的提升了热装热送的钢种比例,节约能耗及生产节奏。
-
公开(公告)号:CN112941409A
公开(公告)日:2021-06-11
申请号:CN202110116391.3
申请日:2021-01-27
Applicant: 南京钢铁股份有限公司
IPC: C22C38/02 , C22C38/04 , C22C38/08 , C21D6/00 , C21D8/02 , C21D9/00 , B21B1/22 , B21B37/74 , B21B45/02
Abstract: 本发明公开了一种低温钢及其制造方法,该低温钢的成分以质量百分比计包括C:0.6~0.8%、Mn:18~20%、Ni:4~6%、Si:≤0.5%、P:≤0.02%、S:≤0.01%,余量的Fe和不可避免的杂质。其成分设计以C、Mn、Ni为主要合金元素,获得了在‑269℃仍具有优良冲击韧性的奥氏体组织低温钢。该钢与9%Ni钢和铬镍奥氏体不锈钢相比Ni含量更低,与9%Ni钢相比使用温度更低,且不需要进行调质或固溶处理等热处理,制造工艺更为简单。
-
公开(公告)号:CN111729939A
公开(公告)日:2020-10-02
申请号:CN202010410611.9
申请日:2020-05-15
Applicant: 南京钢铁股份有限公司
Abstract: 本发明公开了一种减少中厚板轧机头部冲击的方法,以两个道次为一组进行变厚度轧制,具体包括以下步骤:(1)第一道次控制压下量咬入,轧制稳定后启动带载压下,压下量逐渐增大,进行变厚度轧制,本道次轧制完成后轧件纵向厚度呈头厚尾薄状;(2)随后进行第二道次,对上一道次厚度相对薄的轧件尾部进行咬入,仍然以压下量逐渐增大的方式进行变厚度轧制,该道次轧制完成后,轧件纵向头尾厚度一致;本发明该方法实现厚板变厚度轧制,保证设备稳定,提高厚板产品质量,同时减少轧制道次,提高轧制产量。
-
公开(公告)号:CN110846577A
公开(公告)日:2020-02-28
申请号:CN201911138357.5
申请日:2019-11-20
Applicant: 南京钢铁股份有限公司
IPC: C22C38/02 , C22C38/04 , C22C38/08 , C22C38/12 , C22C38/14 , C22C38/22 , C22C38/28 , C22C38/38 , C22C38/44 , C22C38/50 , C22C38/58 , C21D8/02 , C22C33/04
Abstract: 本发明公开了一种690MPa级高强度低屈强比中锰钢中厚钢及制造方法,涉及钢铁冶炼技术领域,其化学成分及质量百分比如下:C:0.05%~0.10%,Mn:4.1%~4.7%,Si:0.15%~0.4%,P≤0.010%,S≤0.003%,Ti:0.01%~0.05%,Ni+Cr+Mo≤0.6%,余量为Fe和不可避免的杂质,能够满足工程机械领域在复杂环境下对超高强钢安全性能和建造成本需求。
-
公开(公告)号:CN109913635B
公开(公告)日:2020-11-20
申请号:CN201910106745.9
申请日:2019-02-02
Applicant: 南京钢铁股份有限公司
Abstract: 本发明公开了一种钢板淬火板形控制的集成方法,包括步骤:(1)来料板形控制;(2)钢板进行抛丸工艺;(3)基于温度均匀性的加热及淬火;(4)强力冷矫直,即完成了钢板淬火板形控制。本发明针对超薄超高强宽规格淬火板形的控制进行了拓展性的研究,结合现场实际生产条件及板形产生机制。综合考虑抛丸工艺、淬火工艺、水量模型及其他工序等影响因素,开展全方位的研究及现场应用。
-
公开(公告)号:CN111363970A
公开(公告)日:2020-07-03
申请号:CN202010240012.7
申请日:2020-03-30
Applicant: 南京钢铁股份有限公司
IPC: C22C33/06 , C21D1/18 , C21D6/00 , C21D8/02 , C21D9/00 , B22D1/00 , C22C38/02 , C22C38/04 , C22C38/12
Abstract: 本发明公开了一种无镍LPG船用钢板及其制造方法,属于高强度结构钢技术领域。该钢板由如下质量百分比的化学成分组成C:0.18~0.24%、Si:0.10~0.19%、Mn:16.1~18.9%、P:≤0.012%、Mo:0.15~0.35%、RE:0.10~0.25%,余量的Fe和不可避免的杂质。其屈服强度≥410MPa,-150℃冲击吸收功≥66J,具有较好的低温力学性能,能够替代5Ni、9Ni系钢,用于低成本的建造LPG储罐及相关结构件。
-
-
-
-
-
-
-
-
-