一种基于深度学习的CT影像全心脏分割方法

    公开(公告)号:CN114596317B

    公开(公告)日:2025-05-06

    申请号:CN202210253312.8

    申请日:2022-03-15

    Applicant: 东北大学

    Abstract: 本发明公开了一种基于深度学习的CT影像全心脏分割方法;涉及医学图像领域;在网络编码阶段中引入残差模块,增强了网络捕捉全心脏子结构特征的能力。在解码阶段引入基于注意力机制的多尺度融合模块,该模块在反卷积之后融合多尺度特征并进行特征重利用,更好的融合了低级特征和高级特征。同时将加权交叉熵损失函数和加权DICE损失函数结合解决了类失衡问题,在分割细节上起到了良好的驱动作用。本发明实现方法简单,自动将全心脏分成7个子结构,包括左心房、左心室、左心室心肌、右心房、右心室、肺动脉、升动脉,测试一个数据只需几秒钟,极大的减少了医生投入的时间和学习成本,处理过程不需要人工交互,达到了应用的要求。

    一种基于深度学习的CT影像全心脏分割方法

    公开(公告)号:CN114596317A

    公开(公告)日:2022-06-07

    申请号:CN202210253312.8

    申请日:2022-03-15

    Applicant: 东北大学

    Abstract: 本发明公开了一种基于深度学习的CT影像全心脏分割方法;涉及医学图像领域;在网络编码阶段中引入残差模块,增强了网络捕捉全心脏子结构特征的能力。在解码阶段引入基于注意力机制的多尺度融合模块,该模块在反卷积之后融合多尺度特征并进行特征重利用,更好的融合了低级特征和高级特征。同时将加权交叉熵损失函数和加权DICE损失函数结合解决了类失衡问题,在分割细节上起到了良好的驱动作用。本发明实现方法简单,自动将全心脏分成7个子结构,包括左心房、左心室、左心室心肌、右心房、右心室、肺动脉、升动脉,测试一个数据只需几秒钟,极大的减少了医生投入的时间和学习成本,处理过程不需要人工交互,达到了应用的要求。

    一种基于混合模型预测的数据中心站多元负荷预测方法

    公开(公告)号:CN113762387A

    公开(公告)日:2021-12-07

    申请号:CN202111048836.5

    申请日:2021-09-08

    Applicant: 东北大学

    Abstract: 本发明提供一种基于混合模型预测的数据中心站多元负荷预测方法,涉及自动控制技术领域。本发明将数据中心站的多元数据分成春秋、夏、冬三类场景,居于各类场景的数据进行多元负荷预测,采用GRA方法对多元负荷数据进行特征分析和归一化,将处理后的数据输入到QPSO-BP神经网络进行预测,在预测算法方面,采用QPSO‑BP神经网络与XGBoost模型并行预测,将深度学习与机器学习技术同时运用于负荷预测,将两种集成学习方式有效结合,充分发挥两个模型优点,有助于获得更稳定、泛化能力更强的模型。混合预测模型能主动丰富维度单一的输入数据特征,避免数据采集过程中人为因素导致的数据误差对计算精度的影响,在负荷波动较大等特殊情况下也能实现高精度负荷预测。

Patent Agency Ranking