-
公开(公告)号:CN113762387A
公开(公告)日:2021-12-07
申请号:CN202111048836.5
申请日:2021-09-08
Applicant: 东北大学
Abstract: 本发明提供一种基于混合模型预测的数据中心站多元负荷预测方法,涉及自动控制技术领域。本发明将数据中心站的多元数据分成春秋、夏、冬三类场景,居于各类场景的数据进行多元负荷预测,采用GRA方法对多元负荷数据进行特征分析和归一化,将处理后的数据输入到QPSO-BP神经网络进行预测,在预测算法方面,采用QPSO‑BP神经网络与XGBoost模型并行预测,将深度学习与机器学习技术同时运用于负荷预测,将两种集成学习方式有效结合,充分发挥两个模型优点,有助于获得更稳定、泛化能力更强的模型。混合预测模型能主动丰富维度单一的输入数据特征,避免数据采集过程中人为因素导致的数据误差对计算精度的影响,在负荷波动较大等特殊情况下也能实现高精度负荷预测。
-
公开(公告)号:CN113762387B
公开(公告)日:2024-02-02
申请号:CN202111048836.5
申请日:2021-09-08
Applicant: 东北大学
Abstract: 本发明提供一种基于混合模型预测的数据中心站多元负荷预测方法,涉及自动控制技术领域。本发明将数据中心站的多元数据分成春秋、夏、冬三类场景,居于各类场景的数据进行多元负荷预测,采用GRA方法对多元负荷数据进行特征分析和归一化,将处理后的数据输入到QPSO-BP神经网络进行预测,在预测算法方面,采用QPSO‑BP神经网络与XGBoost模型并行预测,将深度学习与机器学习技术同时运用于负荷预测,将两种集成学习方式有效结合,充分发挥两个模型优点,有助于获得更稳定、泛化能力更强的模型。混合预测模型能主动丰富维度单一的输入数据特征,避免数据采集过程中人为因素导致的数据误差对计算精度的影响,在负荷波动较大等特殊
-